| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimconstlt0.x |
|- F/ x ph |
| 2 |
|
pimconstlt0.b |
|- ( ph -> B e. RR ) |
| 3 |
|
pimconstlt0.f |
|- F = ( x e. A |-> B ) |
| 4 |
|
pimconstlt0.c |
|- ( ph -> C e. RR* ) |
| 5 |
|
pimconstlt0.l |
|- ( ph -> C <_ B ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ x e. A ) -> C <_ B ) |
| 7 |
3
|
a1i |
|- ( ph -> F = ( x e. A |-> B ) ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 9 |
7 8
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| 10 |
6 9
|
breqtrrd |
|- ( ( ph /\ x e. A ) -> C <_ ( F ` x ) ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. RR* ) |
| 12 |
9 8
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. RR ) |
| 13 |
12
|
rexrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. RR* ) |
| 14 |
11 13
|
xrlenltd |
|- ( ( ph /\ x e. A ) -> ( C <_ ( F ` x ) <-> -. ( F ` x ) < C ) ) |
| 15 |
10 14
|
mpbid |
|- ( ( ph /\ x e. A ) -> -. ( F ` x ) < C ) |
| 16 |
15
|
ex |
|- ( ph -> ( x e. A -> -. ( F ` x ) < C ) ) |
| 17 |
1 16
|
ralrimi |
|- ( ph -> A. x e. A -. ( F ` x ) < C ) |
| 18 |
|
rabeq0 |
|- ( { x e. A | ( F ` x ) < C } = (/) <-> A. x e. A -. ( F ` x ) < C ) |
| 19 |
17 18
|
sylibr |
|- ( ph -> { x e. A | ( F ` x ) < C } = (/) ) |