Metamath Proof Explorer


Theorem pimconstlt0

Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimconstlt0.x 𝑥 𝜑
pimconstlt0.b ( 𝜑𝐵 ∈ ℝ )
pimconstlt0.f 𝐹 = ( 𝑥𝐴𝐵 )
pimconstlt0.c ( 𝜑𝐶 ∈ ℝ* )
pimconstlt0.l ( 𝜑𝐶𝐵 )
Assertion pimconstlt0 ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝐶 } = ∅ )

Proof

Step Hyp Ref Expression
1 pimconstlt0.x 𝑥 𝜑
2 pimconstlt0.b ( 𝜑𝐵 ∈ ℝ )
3 pimconstlt0.f 𝐹 = ( 𝑥𝐴𝐵 )
4 pimconstlt0.c ( 𝜑𝐶 ∈ ℝ* )
5 pimconstlt0.l ( 𝜑𝐶𝐵 )
6 5 adantr ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
7 3 a1i ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
8 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
9 7 8 fvmpt2d ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )
10 6 9 breqtrrd ( ( 𝜑𝑥𝐴 ) → 𝐶 ≤ ( 𝐹𝑥 ) )
11 4 adantr ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ* )
12 9 8 eqeltrd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ℝ )
13 12 rexrd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ℝ* )
14 11 13 xrlenltd ( ( 𝜑𝑥𝐴 ) → ( 𝐶 ≤ ( 𝐹𝑥 ) ↔ ¬ ( 𝐹𝑥 ) < 𝐶 ) )
15 10 14 mpbid ( ( 𝜑𝑥𝐴 ) → ¬ ( 𝐹𝑥 ) < 𝐶 )
16 15 ex ( 𝜑 → ( 𝑥𝐴 → ¬ ( 𝐹𝑥 ) < 𝐶 ) )
17 1 16 ralrimi ( 𝜑 → ∀ 𝑥𝐴 ¬ ( 𝐹𝑥 ) < 𝐶 )
18 rabeq0 ( { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝐶 } = ∅ ↔ ∀ 𝑥𝐴 ¬ ( 𝐹𝑥 ) < 𝐶 )
19 17 18 sylibr ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝐶 } = ∅ )