Step |
Hyp |
Ref |
Expression |
1 |
|
pimconstlt0.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
pimconstlt0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
pimconstlt0.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
|
pimconstlt0.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
5 |
|
pimconstlt0.l |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≤ 𝐵 ) |
7 |
3
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
9 |
7 8
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
10 |
6 9
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≤ ( 𝐹 ‘ 𝑥 ) ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ* ) |
12 |
9 8
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
13 |
12
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
14 |
11 13
|
xrlenltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝐶 ) ) |
15 |
10 14
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝐹 ‘ 𝑥 ) < 𝐶 ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ¬ ( 𝐹 ‘ 𝑥 ) < 𝐶 ) ) |
17 |
1 16
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑥 ) < 𝐶 ) |
18 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑥 ) < 𝐶 ) |
19 |
17 18
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } = ∅ ) |