Step |
Hyp |
Ref |
Expression |
1 |
|
pimconstlt1.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
pimconstlt1.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
pimconstlt1.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
4 |
|
pimconstlt1.4 |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
5 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ⊆ 𝐴 |
6 |
5
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ⊆ 𝐴 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
8 |
3
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
10 |
8 9
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 < 𝐶 ) |
12 |
10 11
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) < 𝐶 ) |
13 |
7 12
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐶 ) ) |
14 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) < 𝐶 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ) ) |
17 |
1 16
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
19 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } |
20 |
18 19
|
dfss3f |
⊢ ( 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ) |
21 |
17 20
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } ) |
22 |
6 21
|
eqssd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐶 } = 𝐴 ) |