Step |
Hyp |
Ref |
Expression |
1 |
|
pimconstlt1.1 |
|- F/ x ph |
2 |
|
pimconstlt1.2 |
|- ( ph -> B e. RR ) |
3 |
|
pimconstlt1.3 |
|- F = ( x e. A |-> B ) |
4 |
|
pimconstlt1.4 |
|- ( ph -> B < C ) |
5 |
|
ssrab2 |
|- { x e. A | ( F ` x ) < C } C_ A |
6 |
5
|
a1i |
|- ( ph -> { x e. A | ( F ` x ) < C } C_ A ) |
7 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
8 |
3
|
a1i |
|- ( ph -> F = ( x e. A |-> B ) ) |
9 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
10 |
8 9
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
11 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> B < C ) |
12 |
10 11
|
eqbrtrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) < C ) |
13 |
7 12
|
jca |
|- ( ( ph /\ x e. A ) -> ( x e. A /\ ( F ` x ) < C ) ) |
14 |
|
rabid |
|- ( x e. { x e. A | ( F ` x ) < C } <-> ( x e. A /\ ( F ` x ) < C ) ) |
15 |
13 14
|
sylibr |
|- ( ( ph /\ x e. A ) -> x e. { x e. A | ( F ` x ) < C } ) |
16 |
15
|
ex |
|- ( ph -> ( x e. A -> x e. { x e. A | ( F ` x ) < C } ) ) |
17 |
1 16
|
ralrimi |
|- ( ph -> A. x e. A x e. { x e. A | ( F ` x ) < C } ) |
18 |
|
nfcv |
|- F/_ x A |
19 |
|
nfrab1 |
|- F/_ x { x e. A | ( F ` x ) < C } |
20 |
18 19
|
dfss3f |
|- ( A C_ { x e. A | ( F ` x ) < C } <-> A. x e. A x e. { x e. A | ( F ` x ) < C } ) |
21 |
17 20
|
sylibr |
|- ( ph -> A C_ { x e. A | ( F ` x ) < C } ) |
22 |
6 21
|
eqssd |
|- ( ph -> { x e. A | ( F ` x ) < C } = A ) |