Metamath Proof Explorer


Theorem sssmfmpt

Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses sssmfmpt.s
|- ( ph -> S e. SAlg )
sssmfmpt.f
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
sssmfmpt.c
|- ( ph -> C C_ A )
Assertion sssmfmpt
|- ( ph -> ( x e. C |-> B ) e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 sssmfmpt.s
 |-  ( ph -> S e. SAlg )
2 sssmfmpt.f
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
3 sssmfmpt.c
 |-  ( ph -> C C_ A )
4 3 resmptd
 |-  ( ph -> ( ( x e. A |-> B ) |` C ) = ( x e. C |-> B ) )
5 4 eqcomd
 |-  ( ph -> ( x e. C |-> B ) = ( ( x e. A |-> B ) |` C ) )
6 1 2 sssmf
 |-  ( ph -> ( ( x e. A |-> B ) |` C ) e. ( SMblFn ` S ) )
7 5 6 eqeltrd
 |-  ( ph -> ( x e. C |-> B ) e. ( SMblFn ` S ) )