Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sssmfmpt.s | |- ( ph -> S e. SAlg ) |
|
sssmfmpt.f | |- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
||
sssmfmpt.c | |- ( ph -> C C_ A ) |
||
Assertion | sssmfmpt | |- ( ph -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssmfmpt.s | |- ( ph -> S e. SAlg ) |
|
2 | sssmfmpt.f | |- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
|
3 | sssmfmpt.c | |- ( ph -> C C_ A ) |
|
4 | 3 | resmptd | |- ( ph -> ( ( x e. A |-> B ) |` C ) = ( x e. C |-> B ) ) |
5 | 4 | eqcomd | |- ( ph -> ( x e. C |-> B ) = ( ( x e. A |-> B ) |` C ) ) |
6 | 1 2 | sssmf | |- ( ph -> ( ( x e. A |-> B ) |` C ) e. ( SMblFn ` S ) ) |
7 | 5 6 | eqeltrd | |- ( ph -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |