Metamath Proof Explorer


Theorem sssmfmpt

Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses sssmfmpt.s φ S SAlg
sssmfmpt.f φ x A B SMblFn S
sssmfmpt.c φ C A
Assertion sssmfmpt φ x C B SMblFn S

Proof

Step Hyp Ref Expression
1 sssmfmpt.s φ S SAlg
2 sssmfmpt.f φ x A B SMblFn S
3 sssmfmpt.c φ C A
4 3 resmptd φ x A B C = x C B
5 4 eqcomd φ x C B = x A B C
6 1 2 sssmf φ x A B C SMblFn S
7 5 6 eqeltrd φ x C B SMblFn S