Metamath Proof Explorer


Theorem sssmfmpt

Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses sssmfmpt.s φSSAlg
sssmfmpt.f φxABSMblFnS
sssmfmpt.c φCA
Assertion sssmfmpt φxCBSMblFnS

Proof

Step Hyp Ref Expression
1 sssmfmpt.s φSSAlg
2 sssmfmpt.f φxABSMblFnS
3 sssmfmpt.c φCA
4 3 resmptd φxABC=xCB
5 4 eqcomd φxCB=xABC
6 1 2 sssmf φxABCSMblFnS
7 5 6 eqeltrd φxCBSMblFnS