Description: A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnfrrnsmf.x | ||
cnfrrnsmf.j | |||
cnfrrnsmf.k | |||
cnfrrnsmf.f | |||
cnfrrnsmf.b | |||
Assertion | cnfrrnsmf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfrrnsmf.x | ||
2 | cnfrrnsmf.j | ||
3 | cnfrrnsmf.k | ||
4 | cnfrrnsmf.f | ||
5 | cnfrrnsmf.b | ||
6 | 2 | rrxtop | |
7 | 1 6 | syl | |
8 | 7 3 4 5 | cnfsmf |