Metamath Proof Explorer


Theorem cnfrrnsmf

Description: A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cnfrrnsmf.x φ X Fin
cnfrrnsmf.j J = TopOpen X
cnfrrnsmf.k K = topGen ran .
cnfrrnsmf.f φ F J 𝑡 dom F Cn K
cnfrrnsmf.b B = SalGen J
Assertion cnfrrnsmf φ F SMblFn B

Proof

Step Hyp Ref Expression
1 cnfrrnsmf.x φ X Fin
2 cnfrrnsmf.j J = TopOpen X
3 cnfrrnsmf.k K = topGen ran .
4 cnfrrnsmf.f φ F J 𝑡 dom F Cn K
5 cnfrrnsmf.b B = SalGen J
6 2 rrxtop X Fin J Top
7 1 6 syl φ J Top
8 7 3 4 5 cnfsmf φ F SMblFn B