Metamath Proof Explorer


Theorem cnfrrnsmf

Description: A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cnfrrnsmf.x ( 𝜑𝑋 ∈ Fin )
cnfrrnsmf.j 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )
cnfrrnsmf.k 𝐾 = ( topGen ‘ ran (,) )
cnfrrnsmf.f ( 𝜑𝐹 ∈ ( ( 𝐽t dom 𝐹 ) Cn 𝐾 ) )
cnfrrnsmf.b 𝐵 = ( SalGen ‘ 𝐽 )
Assertion cnfrrnsmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cnfrrnsmf.x ( 𝜑𝑋 ∈ Fin )
2 cnfrrnsmf.j 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )
3 cnfrrnsmf.k 𝐾 = ( topGen ‘ ran (,) )
4 cnfrrnsmf.f ( 𝜑𝐹 ∈ ( ( 𝐽t dom 𝐹 ) Cn 𝐾 ) )
5 cnfrrnsmf.b 𝐵 = ( SalGen ‘ 𝐽 )
6 2 rrxtop ( 𝑋 ∈ Fin → 𝐽 ∈ Top )
7 1 6 syl ( 𝜑𝐽 ∈ Top )
8 7 3 4 5 cnfsmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐵 ) )