Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
cnfrrnsmf
Metamath Proof Explorer
Description: A function, continuous from the standard topology on the space of
n-dimensional reals to the standard topology on the reals, is Borel
measurable. Proposition 121D (b) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi , 26-Jun-2021)
Ref
Expression
Hypotheses
cnfrrnsmf.x
⊢ ( 𝜑 → 𝑋 ∈ Fin )
cnfrrnsmf.j
⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )
cnfrrnsmf.k
⊢ 𝐾 = ( topGen ‘ ran (,) )
cnfrrnsmf.f
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t dom 𝐹 ) Cn 𝐾 ) )
cnfrrnsmf.b
⊢ 𝐵 = ( SalGen ‘ 𝐽 )
Assertion
cnfrrnsmf
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
cnfrrnsmf.x
⊢ ( 𝜑 → 𝑋 ∈ Fin )
2
cnfrrnsmf.j
⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )
3
cnfrrnsmf.k
⊢ 𝐾 = ( topGen ‘ ran (,) )
4
cnfrrnsmf.f
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t dom 𝐹 ) Cn 𝐾 ) )
5
cnfrrnsmf.b
⊢ 𝐵 = ( SalGen ‘ 𝐽 )
6
2
rrxtop
⊢ ( 𝑋 ∈ Fin → 𝐽 ∈ Top )
7
1 6
syl
⊢ ( 𝜑 → 𝐽 ∈ Top )
8
7 3 4 5
cnfsmf
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐵 ) )