Metamath Proof Explorer


Theorem cnfrrnsmf

Description: A function, continuous from the standard topology on the space of n-dimensional reals to the standard topology on the reals, is Borel measurable. Proposition 121D (b) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cnfrrnsmf.x
|- ( ph -> X e. Fin )
cnfrrnsmf.j
|- J = ( TopOpen ` ( RR^ ` X ) )
cnfrrnsmf.k
|- K = ( topGen ` ran (,) )
cnfrrnsmf.f
|- ( ph -> F e. ( ( J |`t dom F ) Cn K ) )
cnfrrnsmf.b
|- B = ( SalGen ` J )
Assertion cnfrrnsmf
|- ( ph -> F e. ( SMblFn ` B ) )

Proof

Step Hyp Ref Expression
1 cnfrrnsmf.x
 |-  ( ph -> X e. Fin )
2 cnfrrnsmf.j
 |-  J = ( TopOpen ` ( RR^ ` X ) )
3 cnfrrnsmf.k
 |-  K = ( topGen ` ran (,) )
4 cnfrrnsmf.f
 |-  ( ph -> F e. ( ( J |`t dom F ) Cn K ) )
5 cnfrrnsmf.b
 |-  B = ( SalGen ` J )
6 2 rrxtop
 |-  ( X e. Fin -> J e. Top )
7 1 6 syl
 |-  ( ph -> J e. Top )
8 7 3 4 5 cnfsmf
 |-  ( ph -> F e. ( SMblFn ` B ) )