Metamath Proof Explorer


Theorem smfid

Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfid.j 𝐽 = ( topGen ‘ ran (,) )
smfid.b 𝐵 = ( SalGen ‘ 𝐽 )
smfid.a ( 𝜑𝐴 ⊆ ℝ )
Assertion smfid ( 𝜑 → ( 𝑥𝐴𝑥 ) ∈ ( SMblFn ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 smfid.j 𝐽 = ( topGen ‘ ran (,) )
2 smfid.b 𝐵 = ( SalGen ‘ 𝐽 )
3 smfid.a ( 𝜑𝐴 ⊆ ℝ )
4 3 adantr ( ( 𝜑𝑥𝐴 ) → 𝐴 ⊆ ℝ )
5 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
6 4 5 sseldd ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
7 6 fmpttd ( 𝜑 → ( 𝑥𝐴𝑥 ) : 𝐴 ⟶ ℝ )
8 simpr ( ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧𝐴 ) ∧ 𝑦𝑧 ) → 𝑦𝑧 )
9 eqid ( 𝑥𝐴𝑥 ) = ( 𝑥𝐴𝑥 )
10 9 a1i ( ( 𝜑𝑦𝐴 ) → ( 𝑥𝐴𝑥 ) = ( 𝑥𝐴𝑥 ) )
11 simpr ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
12 simpr ( ( 𝜑𝑦𝐴 ) → 𝑦𝐴 )
13 10 11 12 12 fvmptd ( ( 𝜑𝑦𝐴 ) → ( ( 𝑥𝐴𝑥 ) ‘ 𝑦 ) = 𝑦 )
14 13 ad2antrr ( ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧𝐴 ) ∧ 𝑦𝑧 ) → ( ( 𝑥𝐴𝑥 ) ‘ 𝑦 ) = 𝑦 )
15 9 a1i ( ( 𝜑𝑧𝐴 ) → ( 𝑥𝐴𝑥 ) = ( 𝑥𝐴𝑥 ) )
16 simpr ( ( ( 𝜑𝑧𝐴 ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 )
17 simpr ( ( 𝜑𝑧𝐴 ) → 𝑧𝐴 )
18 15 16 17 17 fvmptd ( ( 𝜑𝑧𝐴 ) → ( ( 𝑥𝐴𝑥 ) ‘ 𝑧 ) = 𝑧 )
19 18 ad4ant13 ( ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧𝐴 ) ∧ 𝑦𝑧 ) → ( ( 𝑥𝐴𝑥 ) ‘ 𝑧 ) = 𝑧 )
20 14 19 breq12d ( ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧𝐴 ) ∧ 𝑦𝑧 ) → ( ( ( 𝑥𝐴𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥𝐴𝑥 ) ‘ 𝑧 ) ↔ 𝑦𝑧 ) )
21 8 20 mpbird ( ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧𝐴 ) ∧ 𝑦𝑧 ) → ( ( 𝑥𝐴𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥𝐴𝑥 ) ‘ 𝑧 ) )
22 21 ex ( ( ( 𝜑𝑦𝐴 ) ∧ 𝑧𝐴 ) → ( 𝑦𝑧 → ( ( 𝑥𝐴𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥𝐴𝑥 ) ‘ 𝑧 ) ) )
23 22 ralrimiva ( ( 𝜑𝑦𝐴 ) → ∀ 𝑧𝐴 ( 𝑦𝑧 → ( ( 𝑥𝐴𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥𝐴𝑥 ) ‘ 𝑧 ) ) )
24 23 ralrimiva ( 𝜑 → ∀ 𝑦𝐴𝑧𝐴 ( 𝑦𝑧 → ( ( 𝑥𝐴𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥𝐴𝑥 ) ‘ 𝑧 ) ) )
25 3 7 24 1 2 incsmf ( 𝜑 → ( 𝑥𝐴𝑥 ) ∈ ( SMblFn ‘ 𝐵 ) )