| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfid.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
smfid.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
| 3 |
|
smfid.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 6 |
4 5
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 7 |
6
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) : 𝐴 ⟶ ℝ ) |
| 8 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ≤ 𝑧 ) → 𝑦 ≤ 𝑧 ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 13 |
10 11 12 12
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑦 ) = 𝑦 ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ≤ 𝑧 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑦 ) = 𝑦 ) |
| 15 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 18 |
15 16 17 17
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑧 ) = 𝑧 ) |
| 19 |
18
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ≤ 𝑧 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑧 ) = 𝑧 ) |
| 20 |
14 19
|
breq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ≤ 𝑧 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑧 ) ↔ 𝑦 ≤ 𝑧 ) ) |
| 21 |
8 20
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ≤ 𝑧 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑧 ) ) |
| 22 |
21
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑧 ) ) ) |
| 23 |
22
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑧 ) ) ) |
| 24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑦 ) ≤ ( ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ‘ 𝑧 ) ) ) |
| 25 |
3 7 24 1 2
|
incsmf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( SMblFn ‘ 𝐵 ) ) |