Metamath Proof Explorer


Theorem bormflebmf

Description: A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses bormflebmf.x ( 𝜑𝑋 ∈ Fin )
bormflebmf.b 𝐵 = ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
bormflebmf.l 𝐿 = dom ( voln ‘ 𝑋 )
bormflebmf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐵 ) )
Assertion bormflebmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐿 ) )

Proof

Step Hyp Ref Expression
1 bormflebmf.x ( 𝜑𝑋 ∈ Fin )
2 bormflebmf.b 𝐵 = ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
3 bormflebmf.l 𝐿 = dom ( voln ‘ 𝑋 )
4 bormflebmf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐵 ) )
5 fvexd ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ V )
6 5 2 salgencld ( 𝜑𝐵 ∈ SAlg )
7 1 3 dmovnsal ( 𝜑𝐿 ∈ SAlg )
8 1 3 2 borelmbl ( 𝜑𝐵𝐿 )
9 6 7 8 4 smfsssmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐿 ) )