Description: A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bormflebmf.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| bormflebmf.b | ⊢ 𝐵 = ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | ||
| bormflebmf.l | ⊢ 𝐿 = dom ( voln ‘ 𝑋 ) | ||
| bormflebmf.f | ⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐵 ) ) | ||
| Assertion | bormflebmf | ⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bormflebmf.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 2 | bormflebmf.b | ⊢ 𝐵 = ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | |
| 3 | bormflebmf.l | ⊢ 𝐿 = dom ( voln ‘ 𝑋 ) | |
| 4 | bormflebmf.f | ⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐵 ) ) | |
| 5 | fvexd | ⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ V ) | |
| 6 | 5 2 | salgencld | ⊢ ( 𝜑 → 𝐵 ∈ SAlg ) |
| 7 | 1 3 | dmovnsal | ⊢ ( 𝜑 → 𝐿 ∈ SAlg ) |
| 8 | 1 3 2 | borelmbl | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐿 ) |
| 9 | 6 7 8 4 | smfsssmf | ⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐿 ) ) |