Metamath Proof Explorer


Theorem bormflebmf

Description: A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses bormflebmf.x
|- ( ph -> X e. Fin )
bormflebmf.b
|- B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) )
bormflebmf.l
|- L = dom ( voln ` X )
bormflebmf.f
|- ( ph -> F e. ( SMblFn ` B ) )
Assertion bormflebmf
|- ( ph -> F e. ( SMblFn ` L ) )

Proof

Step Hyp Ref Expression
1 bormflebmf.x
 |-  ( ph -> X e. Fin )
2 bormflebmf.b
 |-  B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) )
3 bormflebmf.l
 |-  L = dom ( voln ` X )
4 bormflebmf.f
 |-  ( ph -> F e. ( SMblFn ` B ) )
5 fvexd
 |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. _V )
6 5 2 salgencld
 |-  ( ph -> B e. SAlg )
7 1 3 dmovnsal
 |-  ( ph -> L e. SAlg )
8 1 3 2 borelmbl
 |-  ( ph -> B C_ L )
9 6 7 8 4 smfsssmf
 |-  ( ph -> F e. ( SMblFn ` L ) )