Description: A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bormflebmf.x | |- ( ph -> X e. Fin ) |
|
bormflebmf.b | |- B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) ) |
||
bormflebmf.l | |- L = dom ( voln ` X ) |
||
bormflebmf.f | |- ( ph -> F e. ( SMblFn ` B ) ) |
||
Assertion | bormflebmf | |- ( ph -> F e. ( SMblFn ` L ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bormflebmf.x | |- ( ph -> X e. Fin ) |
|
2 | bormflebmf.b | |- B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) ) |
|
3 | bormflebmf.l | |- L = dom ( voln ` X ) |
|
4 | bormflebmf.f | |- ( ph -> F e. ( SMblFn ` B ) ) |
|
5 | fvexd | |- ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. _V ) |
|
6 | 5 2 | salgencld | |- ( ph -> B e. SAlg ) |
7 | 1 3 | dmovnsal | |- ( ph -> L e. SAlg ) |
8 | 1 3 2 | borelmbl | |- ( ph -> B C_ L ) |
9 | 6 7 8 4 | smfsssmf | |- ( ph -> F e. ( SMblFn ` L ) ) |