| Step | Hyp | Ref | Expression | 
						
							| 1 |  | borelmbl.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | borelmbl.s |  |-  S = dom ( voln ` X ) | 
						
							| 3 |  | borelmbl.b |  |-  B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 4 |  | fvexd |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. _V ) | 
						
							| 5 | 1 2 | dmovnsal |  |-  ( ph -> S e. SAlg ) | 
						
							| 6 | 1 | adantr |  |-  ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> X e. Fin ) | 
						
							| 7 |  | simpr |  |-  ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> y e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 8 | 6 2 7 | opnvonmbl |  |-  ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> y e. S ) | 
						
							| 9 | 8 | ssd |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) C_ S ) | 
						
							| 10 |  | eqid |  |-  dom ( voln ` X ) = dom ( voln ` X ) | 
						
							| 11 | 1 10 | unidmvon |  |-  ( ph -> U. dom ( voln ` X ) = ( RR ^m X ) ) | 
						
							| 12 | 2 | unieqi |  |-  U. S = U. dom ( voln ` X ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> U. S = U. dom ( voln ` X ) ) | 
						
							| 14 |  | rrxunitopnfi |  |-  ( X e. Fin -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) ) | 
						
							| 15 | 1 14 | syl |  |-  ( ph -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) ) | 
						
							| 16 | 11 13 15 | 3eqtr4d |  |-  ( ph -> U. S = U. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 17 | 4 3 5 9 16 | salgenss |  |-  ( ph -> B C_ S ) |