| Step |
Hyp |
Ref |
Expression |
| 1 |
|
borelmbl.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
borelmbl.s |
|- S = dom ( voln ` X ) |
| 3 |
|
borelmbl.b |
|- B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) ) |
| 4 |
|
fvexd |
|- ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. _V ) |
| 5 |
1 2
|
dmovnsal |
|- ( ph -> S e. SAlg ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> X e. Fin ) |
| 7 |
|
simpr |
|- ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> y e. ( TopOpen ` ( RR^ ` X ) ) ) |
| 8 |
6 2 7
|
opnvonmbl |
|- ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> y e. S ) |
| 9 |
8
|
ssd |
|- ( ph -> ( TopOpen ` ( RR^ ` X ) ) C_ S ) |
| 10 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
| 11 |
1 10
|
unidmvon |
|- ( ph -> U. dom ( voln ` X ) = ( RR ^m X ) ) |
| 12 |
2
|
unieqi |
|- U. S = U. dom ( voln ` X ) |
| 13 |
12
|
a1i |
|- ( ph -> U. S = U. dom ( voln ` X ) ) |
| 14 |
|
rrxunitopnfi |
|- ( X e. Fin -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) ) |
| 15 |
1 14
|
syl |
|- ( ph -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) ) |
| 16 |
11 13 15
|
3eqtr4d |
|- ( ph -> U. S = U. ( TopOpen ` ( RR^ ` X ) ) ) |
| 17 |
4 3 5 9 16
|
salgenss |
|- ( ph -> B C_ S ) |