Metamath Proof Explorer


Theorem borelmbl

Description: All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of Fremlin1 p. 32. See also Definition 111G (d) of Fremlin1 p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses borelmbl.x
|- ( ph -> X e. Fin )
borelmbl.s
|- S = dom ( voln ` X )
borelmbl.b
|- B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) )
Assertion borelmbl
|- ( ph -> B C_ S )

Proof

Step Hyp Ref Expression
1 borelmbl.x
 |-  ( ph -> X e. Fin )
2 borelmbl.s
 |-  S = dom ( voln ` X )
3 borelmbl.b
 |-  B = ( SalGen ` ( TopOpen ` ( RR^ ` X ) ) )
4 fvexd
 |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. _V )
5 1 2 dmovnsal
 |-  ( ph -> S e. SAlg )
6 1 adantr
 |-  ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> X e. Fin )
7 simpr
 |-  ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> y e. ( TopOpen ` ( RR^ ` X ) ) )
8 6 2 7 opnvonmbl
 |-  ( ( ph /\ y e. ( TopOpen ` ( RR^ ` X ) ) ) -> y e. S )
9 8 ssd
 |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) C_ S )
10 eqid
 |-  dom ( voln ` X ) = dom ( voln ` X )
11 1 10 unidmvon
 |-  ( ph -> U. dom ( voln ` X ) = ( RR ^m X ) )
12 2 unieqi
 |-  U. S = U. dom ( voln ` X )
13 12 a1i
 |-  ( ph -> U. S = U. dom ( voln ` X ) )
14 rrxunitopnfi
 |-  ( X e. Fin -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) )
15 1 14 syl
 |-  ( ph -> U. ( TopOpen ` ( RR^ ` X ) ) = ( RR ^m X ) )
16 11 13 15 3eqtr4d
 |-  ( ph -> U. S = U. ( TopOpen ` ( RR^ ` X ) ) )
17 4 3 5 9 16 salgenss
 |-  ( ph -> B C_ S )