| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|- ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) |
| 2 |
1
|
rexrd |
|- ( ( A e. RR /\ B e. RR ) -> 0 e. RR* ) |
| 3 |
|
pnfxr |
|- +oo e. RR* |
| 4 |
3
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> +oo e. RR* ) |
| 5 |
|
volicore |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR ) |
| 6 |
5
|
rexrd |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR* ) |
| 7 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 8 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 9 |
8
|
rexrd |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR* ) |
| 10 |
|
icombl |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |
| 11 |
7 9 10
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) e. dom vol ) |
| 12 |
|
volge0 |
|- ( ( A [,) B ) e. dom vol -> 0 <_ ( vol ` ( A [,) B ) ) ) |
| 13 |
11 12
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( vol ` ( A [,) B ) ) ) |
| 14 |
5
|
ltpnfd |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) < +oo ) |
| 15 |
2 4 6 13 14
|
elicod |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) ) |