Metamath Proof Explorer


Theorem volicorege0

Description: The Lebesgue measure of a left-closed right-open interval with real bounds, is a nonnegative real number. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volicorege0
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) )

Proof

Step Hyp Ref Expression
1 0red
 |-  ( ( A e. RR /\ B e. RR ) -> 0 e. RR )
2 1 rexrd
 |-  ( ( A e. RR /\ B e. RR ) -> 0 e. RR* )
3 pnfxr
 |-  +oo e. RR*
4 3 a1i
 |-  ( ( A e. RR /\ B e. RR ) -> +oo e. RR* )
5 volicore
 |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR )
6 5 rexrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR* )
7 simpl
 |-  ( ( A e. RR /\ B e. RR ) -> A e. RR )
8 simpr
 |-  ( ( A e. RR /\ B e. RR ) -> B e. RR )
9 8 rexrd
 |-  ( ( A e. RR /\ B e. RR ) -> B e. RR* )
10 icombl
 |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol )
11 7 9 10 syl2anc
 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) e. dom vol )
12 volge0
 |-  ( ( A [,) B ) e. dom vol -> 0 <_ ( vol ` ( A [,) B ) ) )
13 11 12 syl
 |-  ( ( A e. RR /\ B e. RR ) -> 0 <_ ( vol ` ( A [,) B ) ) )
14 5 ltpnfd
 |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) < +oo )
15 2 4 6 13 14 elicod
 |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) )