| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  |-  ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) | 
						
							| 2 | 1 | rexrd |  |-  ( ( A e. RR /\ B e. RR ) -> 0 e. RR* ) | 
						
							| 3 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 4 | 3 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> +oo e. RR* ) | 
						
							| 5 |  | volicore |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR ) | 
						
							| 6 | 5 | rexrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. RR* ) | 
						
							| 7 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 8 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 9 | 8 | rexrd |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR* ) | 
						
							| 10 |  | icombl |  |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) | 
						
							| 11 | 7 9 10 | syl2anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) e. dom vol ) | 
						
							| 12 |  | volge0 |  |-  ( ( A [,) B ) e. dom vol -> 0 <_ ( vol ` ( A [,) B ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> 0 <_ ( vol ` ( A [,) B ) ) ) | 
						
							| 14 | 5 | ltpnfd |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) < +oo ) | 
						
							| 15 | 2 4 6 13 14 | elicod |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) e. ( 0 [,) +oo ) ) |