Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ ) |
2 |
1
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ* ) |
3 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → +∞ ∈ ℝ* ) |
5 |
|
volicore |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ ) |
6 |
5
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ* ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
9 |
8
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ* ) |
10 |
|
icombl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
12 |
|
volge0 |
⊢ ( ( 𝐴 [,) 𝐵 ) ∈ dom vol → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
14 |
5
|
ltpnfd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) < +∞ ) |
15 |
2 4 6 13 14
|
elicod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ( 0 [,) +∞ ) ) |