| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ∈  ℝ ) | 
						
							| 2 | 1 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ∈  ℝ* ) | 
						
							| 3 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  +∞  ∈  ℝ* ) | 
						
							| 5 |  | volicore | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 6 | 5 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ℝ* ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 9 | 8 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ* ) | 
						
							| 10 |  | icombl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 12 |  | volge0 | ⊢ ( ( 𝐴 [,) 𝐵 )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ≤  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 14 | 5 | ltpnfd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  <  +∞ ) | 
						
							| 15 | 2 4 6 13 14 | elicod | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ( 0 [,) +∞ ) ) |