Metamath Proof Explorer


Theorem volicorege0

Description: The Lebesgue measure of a left-closed right-open interval with real bounds, is a nonnegative real number. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volicorege0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 0red ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ )
2 1 rexrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ* )
3 pnfxr +∞ ∈ ℝ*
4 3 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → +∞ ∈ ℝ* )
5 volicore ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ )
6 5 rexrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ* )
7 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ )
8 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
9 8 rexrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ* )
10 icombl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol )
11 7 9 10 syl2anc ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol )
12 volge0 ( ( 𝐴 [,) 𝐵 ) ∈ dom vol → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) )
13 11 12 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) )
14 5 ltpnfd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) < +∞ )
15 2 4 6 13 14 elicod ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ( 0 [,) +∞ ) )