| Step | Hyp | Ref | Expression | 
						
							| 1 |  | borelmbl.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | borelmbl.s | ⊢ 𝑆  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 3 |  | borelmbl.b | ⊢ 𝐵  =  ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 4 |  | fvexd | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  V ) | 
						
							| 5 | 1 2 | dmovnsal | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )  →  𝑦  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 8 | 6 2 7 | opnvonmbl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 9 | 8 | ssd | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ⊆  𝑆 ) | 
						
							| 10 |  | eqid | ⊢ dom  ( voln ‘ 𝑋 )  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 11 | 1 10 | unidmvon | ⊢ ( 𝜑  →  ∪  dom  ( voln ‘ 𝑋 )  =  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 12 | 2 | unieqi | ⊢ ∪  𝑆  =  ∪  dom  ( voln ‘ 𝑋 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 14 |  | rrxunitopnfi | ⊢ ( 𝑋  ∈  Fin  →  ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝜑  →  ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 16 | 11 13 15 | 3eqtr4d | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 17 | 4 3 5 9 16 | salgenss | ⊢ ( 𝜑  →  𝐵  ⊆  𝑆 ) |