Metamath Proof Explorer


Theorem borelmbl

Description: All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of Fremlin1 p. 32. See also Definition 111G (d) of Fremlin1 p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses borelmbl.x ( 𝜑𝑋 ∈ Fin )
borelmbl.s 𝑆 = dom ( voln ‘ 𝑋 )
borelmbl.b 𝐵 = ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
Assertion borelmbl ( 𝜑𝐵𝑆 )

Proof

Step Hyp Ref Expression
1 borelmbl.x ( 𝜑𝑋 ∈ Fin )
2 borelmbl.s 𝑆 = dom ( voln ‘ 𝑋 )
3 borelmbl.b 𝐵 = ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
4 fvexd ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ V )
5 1 2 dmovnsal ( 𝜑𝑆 ∈ SAlg )
6 1 adantr ( ( 𝜑𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝑋 ∈ Fin )
7 simpr ( ( 𝜑𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
8 6 2 7 opnvonmbl ( ( 𝜑𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝑦𝑆 )
9 8 ssd ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ⊆ 𝑆 )
10 eqid dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 )
11 1 10 unidmvon ( 𝜑 dom ( voln ‘ 𝑋 ) = ( ℝ ↑m 𝑋 ) )
12 2 unieqi 𝑆 = dom ( voln ‘ 𝑋 )
13 12 a1i ( 𝜑 𝑆 = dom ( voln ‘ 𝑋 ) )
14 rrxunitopnfi ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) )
15 1 14 syl ( 𝜑 ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) )
16 11 13 15 3eqtr4d ( 𝜑 𝑆 = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
17 4 3 5 9 16 salgenss ( 𝜑𝐵𝑆 )