| Step |
Hyp |
Ref |
Expression |
| 1 |
|
borelmbl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
borelmbl.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
| 3 |
|
borelmbl.b |
⊢ 𝐵 = ( SalGen ‘ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
| 4 |
|
fvexd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ V ) |
| 5 |
1 2
|
dmovnsal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝑋 ∈ Fin ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
| 8 |
6 2 7
|
opnvonmbl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝑦 ∈ 𝑆 ) |
| 9 |
8
|
ssd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ⊆ 𝑆 ) |
| 10 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
| 11 |
1 10
|
unidmvon |
⊢ ( 𝜑 → ∪ dom ( voln ‘ 𝑋 ) = ( ℝ ↑m 𝑋 ) ) |
| 12 |
2
|
unieqi |
⊢ ∪ 𝑆 = ∪ dom ( voln ‘ 𝑋 ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ dom ( voln ‘ 𝑋 ) ) |
| 14 |
|
rrxunitopnfi |
⊢ ( 𝑋 ∈ Fin → ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) ) |
| 15 |
1 14
|
syl |
⊢ ( 𝜑 → ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) ) |
| 16 |
11 13 15
|
3eqtr4d |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
| 17 |
4 3 5 9 16
|
salgenss |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑆 ) |