| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unidmvon.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
unidmvon.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → 𝑆 = dom ( voln ‘ 𝑋 ) ) |
| 4 |
1
|
dmvon |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 5 |
3 4
|
eqtrd |
⊢ ( 𝜑 → 𝑆 = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 6 |
5
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 7 |
1
|
ovnome |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |
| 8 |
|
eqid |
⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) |
| 9 |
7 8
|
caragenuni |
⊢ ( 𝜑 → ∪ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ∪ dom ( voln* ‘ 𝑋 ) ) |
| 10 |
1
|
unidmovn |
⊢ ( 𝜑 → ∪ dom ( voln* ‘ 𝑋 ) = ( ℝ ↑m 𝑋 ) ) |
| 11 |
6 9 10
|
3eqtrd |
⊢ ( 𝜑 → ∪ 𝑆 = ( ℝ ↑m 𝑋 ) ) |