Metamath Proof Explorer


Theorem unidmvon

Description: Base set of the n-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses unidmvon.x ( 𝜑𝑋 ∈ Fin )
unidmvon.s 𝑆 = dom ( voln ‘ 𝑋 )
Assertion unidmvon ( 𝜑 𝑆 = ( ℝ ↑m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 unidmvon.x ( 𝜑𝑋 ∈ Fin )
2 unidmvon.s 𝑆 = dom ( voln ‘ 𝑋 )
3 2 a1i ( 𝜑𝑆 = dom ( voln ‘ 𝑋 ) )
4 1 dmvon ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
5 3 4 eqtrd ( 𝜑𝑆 = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
6 5 unieqd ( 𝜑 𝑆 = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
7 1 ovnome ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas )
8 eqid ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) )
9 7 8 caragenuni ( 𝜑 ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = dom ( voln* ‘ 𝑋 ) )
10 1 unidmovn ( 𝜑 dom ( voln* ‘ 𝑋 ) = ( ℝ ↑m 𝑋 ) )
11 6 9 10 3eqtrd ( 𝜑 𝑆 = ( ℝ ↑m 𝑋 ) )