Metamath Proof Explorer


Theorem unidmovn

Description: Base set of the n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis unidmovn.1 ( 𝜑𝑋 ∈ Fin )
Assertion unidmovn ( 𝜑 dom ( voln* ‘ 𝑋 ) = ( ℝ ↑m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 unidmovn.1 ( 𝜑𝑋 ∈ Fin )
2 1 dmovn ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) )
3 2 unieqd ( 𝜑 dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) )
4 unipw 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 )
5 4 a1i ( 𝜑 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) )
6 3 5 eqtrd ( 𝜑 dom ( voln* ‘ 𝑋 ) = ( ℝ ↑m 𝑋 ) )