| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unidmvon.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
unidmvon.s |
|- S = dom ( voln ` X ) |
| 3 |
2
|
a1i |
|- ( ph -> S = dom ( voln ` X ) ) |
| 4 |
1
|
dmvon |
|- ( ph -> dom ( voln ` X ) = ( CaraGen ` ( voln* ` X ) ) ) |
| 5 |
3 4
|
eqtrd |
|- ( ph -> S = ( CaraGen ` ( voln* ` X ) ) ) |
| 6 |
5
|
unieqd |
|- ( ph -> U. S = U. ( CaraGen ` ( voln* ` X ) ) ) |
| 7 |
1
|
ovnome |
|- ( ph -> ( voln* ` X ) e. OutMeas ) |
| 8 |
|
eqid |
|- ( CaraGen ` ( voln* ` X ) ) = ( CaraGen ` ( voln* ` X ) ) |
| 9 |
7 8
|
caragenuni |
|- ( ph -> U. ( CaraGen ` ( voln* ` X ) ) = U. dom ( voln* ` X ) ) |
| 10 |
1
|
unidmovn |
|- ( ph -> U. dom ( voln* ` X ) = ( RR ^m X ) ) |
| 11 |
6 9 10
|
3eqtrd |
|- ( ph -> U. S = ( RR ^m X ) ) |