Metamath Proof Explorer


Theorem unidmvon

Description: Base set of the n-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses unidmvon.x
|- ( ph -> X e. Fin )
unidmvon.s
|- S = dom ( voln ` X )
Assertion unidmvon
|- ( ph -> U. S = ( RR ^m X ) )

Proof

Step Hyp Ref Expression
1 unidmvon.x
 |-  ( ph -> X e. Fin )
2 unidmvon.s
 |-  S = dom ( voln ` X )
3 2 a1i
 |-  ( ph -> S = dom ( voln ` X ) )
4 1 dmvon
 |-  ( ph -> dom ( voln ` X ) = ( CaraGen ` ( voln* ` X ) ) )
5 3 4 eqtrd
 |-  ( ph -> S = ( CaraGen ` ( voln* ` X ) ) )
6 5 unieqd
 |-  ( ph -> U. S = U. ( CaraGen ` ( voln* ` X ) ) )
7 1 ovnome
 |-  ( ph -> ( voln* ` X ) e. OutMeas )
8 eqid
 |-  ( CaraGen ` ( voln* ` X ) ) = ( CaraGen ` ( voln* ` X ) )
9 7 8 caragenuni
 |-  ( ph -> U. ( CaraGen ` ( voln* ` X ) ) = U. dom ( voln* ` X ) )
10 1 unidmovn
 |-  ( ph -> U. dom ( voln* ` X ) = ( RR ^m X ) )
11 6 9 10 3eqtrd
 |-  ( ph -> U. S = ( RR ^m X ) )