Metamath Proof Explorer


Theorem bormflebmf

Description: A Borel measurable function is Lebesgue measurable. Proposition 121D (a) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses bormflebmf.x φ X Fin
bormflebmf.b B = SalGen TopOpen X
bormflebmf.l L = dom voln X
bormflebmf.f φ F SMblFn B
Assertion bormflebmf φ F SMblFn L

Proof

Step Hyp Ref Expression
1 bormflebmf.x φ X Fin
2 bormflebmf.b B = SalGen TopOpen X
3 bormflebmf.l L = dom voln X
4 bormflebmf.f φ F SMblFn B
5 fvexd φ TopOpen X V
6 5 2 salgencld φ B SAlg
7 1 3 dmovnsal φ L SAlg
8 1 3 2 borelmbl φ B L
9 6 7 8 4 smfsssmf φ F SMblFn L