Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sssmfmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
sssmfmpt.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) | ||
sssmfmpt.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
Assertion | sssmfmpt | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssmfmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
2 | sssmfmpt.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) | |
3 | sssmfmpt.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
4 | 3 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) |
5 | 4 | eqcomd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) ) |
6 | 1 2 | sssmf | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
7 | 5 6 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |