Metamath Proof Explorer


Theorem sssmfmpt

Description: The restriction of a sigma-measurable function is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses sssmfmpt.s ( 𝜑𝑆 ∈ SAlg )
sssmfmpt.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
sssmfmpt.c ( 𝜑𝐶𝐴 )
Assertion sssmfmpt ( 𝜑 → ( 𝑥𝐶𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 sssmfmpt.s ( 𝜑𝑆 ∈ SAlg )
2 sssmfmpt.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
3 sssmfmpt.c ( 𝜑𝐶𝐴 )
4 3 resmptd ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) = ( 𝑥𝐶𝐵 ) )
5 4 eqcomd ( 𝜑 → ( 𝑥𝐶𝐵 ) = ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) )
6 1 2 sssmf ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ↾ 𝐶 ) ∈ ( SMblFn ‘ 𝑆 ) )
7 5 6 eqeltrd ( 𝜑 → ( 𝑥𝐶𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )