| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issmfdf.x |
|- F/_ x F |
| 2 |
|
issmfdf.a |
|- F/ a ph |
| 3 |
|
issmfdf.s |
|- ( ph -> S e. SAlg ) |
| 4 |
|
issmfdf.d |
|- ( ph -> D C_ U. S ) |
| 5 |
|
issmfdf.f |
|- ( ph -> F : D --> RR ) |
| 6 |
|
issmfdf.p |
|- ( ( ph /\ a e. RR ) -> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) |
| 7 |
5
|
fdmd |
|- ( ph -> dom F = D ) |
| 8 |
7 4
|
eqsstrd |
|- ( ph -> dom F C_ U. S ) |
| 9 |
5
|
ffdmd |
|- ( ph -> F : dom F --> RR ) |
| 10 |
1
|
nfdm |
|- F/_ x dom F |
| 11 |
|
nfcv |
|- F/_ x D |
| 12 |
10 11
|
rabeqf |
|- ( dom F = D -> { x e. dom F | ( F ` x ) < a } = { x e. D | ( F ` x ) < a } ) |
| 13 |
7 12
|
syl |
|- ( ph -> { x e. dom F | ( F ` x ) < a } = { x e. D | ( F ` x ) < a } ) |
| 14 |
7
|
oveq2d |
|- ( ph -> ( S |`t dom F ) = ( S |`t D ) ) |
| 15 |
13 14
|
eleq12d |
|- ( ph -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
| 17 |
6 16
|
mpbird |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
| 18 |
17
|
ex |
|- ( ph -> ( a e. RR -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) ) |
| 19 |
2 18
|
ralrimi |
|- ( ph -> A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
| 20 |
8 9 19
|
3jca |
|- ( ph -> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) ) |
| 21 |
|
eqid |
|- dom F = dom F |
| 22 |
1 3 21
|
issmff |
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) ) ) |
| 23 |
20 22
|
mpbird |
|- ( ph -> F e. ( SMblFn ` S ) ) |