Step |
Hyp |
Ref |
Expression |
1 |
|
issmfdf.x |
|- F/_ x F |
2 |
|
issmfdf.a |
|- F/ a ph |
3 |
|
issmfdf.s |
|- ( ph -> S e. SAlg ) |
4 |
|
issmfdf.d |
|- ( ph -> D C_ U. S ) |
5 |
|
issmfdf.f |
|- ( ph -> F : D --> RR ) |
6 |
|
issmfdf.p |
|- ( ( ph /\ a e. RR ) -> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) |
7 |
5
|
fdmd |
|- ( ph -> dom F = D ) |
8 |
7 4
|
eqsstrd |
|- ( ph -> dom F C_ U. S ) |
9 |
5
|
ffdmd |
|- ( ph -> F : dom F --> RR ) |
10 |
1
|
nfdm |
|- F/_ x dom F |
11 |
|
nfcv |
|- F/_ x D |
12 |
10 11
|
rabeqf |
|- ( dom F = D -> { x e. dom F | ( F ` x ) < a } = { x e. D | ( F ` x ) < a } ) |
13 |
7 12
|
syl |
|- ( ph -> { x e. dom F | ( F ` x ) < a } = { x e. D | ( F ` x ) < a } ) |
14 |
7
|
oveq2d |
|- ( ph -> ( S |`t dom F ) = ( S |`t D ) ) |
15 |
13 14
|
eleq12d |
|- ( ph -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
17 |
6 16
|
mpbird |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
18 |
17
|
ex |
|- ( ph -> ( a e. RR -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) ) |
19 |
2 18
|
ralrimi |
|- ( ph -> A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
20 |
8 9 19
|
3jca |
|- ( ph -> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) ) |
21 |
|
eqid |
|- dom F = dom F |
22 |
1 3 21
|
issmff |
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) ) ) |
23 |
20 22
|
mpbird |
|- ( ph -> F e. ( SMblFn ` S ) ) |