Metamath Proof Explorer


Theorem issmfdmpt

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfdmpt.x
|- F/ x ph
issmfdmpt.a
|- F/ a ph
issmfdmpt.s
|- ( ph -> S e. SAlg )
issmfdmpt.i
|- ( ph -> A C_ U. S )
issmfdmpt.b
|- ( ( ph /\ x e. A ) -> B e. RR )
issmfdmpt.p
|- ( ( ph /\ a e. RR ) -> { x e. A | B < a } e. ( S |`t A ) )
Assertion issmfdmpt
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 issmfdmpt.x
 |-  F/ x ph
2 issmfdmpt.a
 |-  F/ a ph
3 issmfdmpt.s
 |-  ( ph -> S e. SAlg )
4 issmfdmpt.i
 |-  ( ph -> A C_ U. S )
5 issmfdmpt.b
 |-  ( ( ph /\ x e. A ) -> B e. RR )
6 issmfdmpt.p
 |-  ( ( ph /\ a e. RR ) -> { x e. A | B < a } e. ( S |`t A ) )
7 nfmpt1
 |-  F/_ x ( x e. A |-> B )
8 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
9 1 5 8 fmptdf
 |-  ( ph -> ( x e. A |-> B ) : A --> RR )
10 eqidd
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) )
11 10 5 fvmpt2d
 |-  ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B )
12 11 breq1d
 |-  ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) )
13 12 ex
 |-  ( ph -> ( x e. A -> ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) ) )
14 1 13 ralrimi
 |-  ( ph -> A. x e. A ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) )
15 rabbi
 |-  ( A. x e. A ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) <-> { x e. A | ( ( x e. A |-> B ) ` x ) < a } = { x e. A | B < a } )
16 14 15 sylib
 |-  ( ph -> { x e. A | ( ( x e. A |-> B ) ` x ) < a } = { x e. A | B < a } )
17 16 adantr
 |-  ( ( ph /\ a e. RR ) -> { x e. A | ( ( x e. A |-> B ) ` x ) < a } = { x e. A | B < a } )
18 17 6 eqeltrd
 |-  ( ( ph /\ a e. RR ) -> { x e. A | ( ( x e. A |-> B ) ` x ) < a } e. ( S |`t A ) )
19 7 2 3 4 9 18 issmfdf
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )