Step |
Hyp |
Ref |
Expression |
1 |
|
issmfdmpt.x |
|- F/ x ph |
2 |
|
issmfdmpt.a |
|- F/ a ph |
3 |
|
issmfdmpt.s |
|- ( ph -> S e. SAlg ) |
4 |
|
issmfdmpt.i |
|- ( ph -> A C_ U. S ) |
5 |
|
issmfdmpt.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
6 |
|
issmfdmpt.p |
|- ( ( ph /\ a e. RR ) -> { x e. A | B < a } e. ( S |`t A ) ) |
7 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
8 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
9 |
1 5 8
|
fmptdf |
|- ( ph -> ( x e. A |-> B ) : A --> RR ) |
10 |
|
eqidd |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
11 |
10 5
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
12 |
11
|
breq1d |
|- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) ) |
13 |
12
|
ex |
|- ( ph -> ( x e. A -> ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) ) ) |
14 |
1 13
|
ralrimi |
|- ( ph -> A. x e. A ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) ) |
15 |
|
rabbi |
|- ( A. x e. A ( ( ( x e. A |-> B ) ` x ) < a <-> B < a ) <-> { x e. A | ( ( x e. A |-> B ) ` x ) < a } = { x e. A | B < a } ) |
16 |
14 15
|
sylib |
|- ( ph -> { x e. A | ( ( x e. A |-> B ) ` x ) < a } = { x e. A | B < a } ) |
17 |
16
|
adantr |
|- ( ( ph /\ a e. RR ) -> { x e. A | ( ( x e. A |-> B ) ` x ) < a } = { x e. A | B < a } ) |
18 |
17 6
|
eqeltrd |
|- ( ( ph /\ a e. RR ) -> { x e. A | ( ( x e. A |-> B ) ` x ) < a } e. ( S |`t A ) ) |
19 |
7 2 3 4 9 18
|
issmfdf |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |