Metamath Proof Explorer


Theorem issmfdmpt

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfdmpt.x xφ
issmfdmpt.a aφ
issmfdmpt.s φSSAlg
issmfdmpt.i φAS
issmfdmpt.b φxAB
issmfdmpt.p φaxA|B<aS𝑡A
Assertion issmfdmpt φxABSMblFnS

Proof

Step Hyp Ref Expression
1 issmfdmpt.x xφ
2 issmfdmpt.a aφ
3 issmfdmpt.s φSSAlg
4 issmfdmpt.i φAS
5 issmfdmpt.b φxAB
6 issmfdmpt.p φaxA|B<aS𝑡A
7 nfmpt1 _xxAB
8 eqid xAB=xAB
9 1 5 8 fmptdf φxAB:A
10 eqidd φxAB=xAB
11 10 5 fvmpt2d φxAxABx=B
12 11 breq1d φxAxABx<aB<a
13 12 ex φxAxABx<aB<a
14 1 13 ralrimi φxAxABx<aB<a
15 rabbi xAxABx<aB<axA|xABx<a=xA|B<a
16 14 15 sylib φxA|xABx<a=xA|B<a
17 16 adantr φaxA|xABx<a=xA|B<a
18 17 6 eqeltrd φaxA|xABx<aS𝑡A
19 7 2 3 4 9 18 issmfdf φxABSMblFnS