Metamath Proof Explorer


Theorem issmfdmpt

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfdmpt.x x φ
issmfdmpt.a a φ
issmfdmpt.s φ S SAlg
issmfdmpt.i φ A S
issmfdmpt.b φ x A B
issmfdmpt.p φ a x A | B < a S 𝑡 A
Assertion issmfdmpt φ x A B SMblFn S

Proof

Step Hyp Ref Expression
1 issmfdmpt.x x φ
2 issmfdmpt.a a φ
3 issmfdmpt.s φ S SAlg
4 issmfdmpt.i φ A S
5 issmfdmpt.b φ x A B
6 issmfdmpt.p φ a x A | B < a S 𝑡 A
7 nfmpt1 _ x x A B
8 eqid x A B = x A B
9 1 5 8 fmptdf φ x A B : A
10 eqidd φ x A B = x A B
11 10 5 fvmpt2d φ x A x A B x = B
12 11 breq1d φ x A x A B x < a B < a
13 12 ex φ x A x A B x < a B < a
14 1 13 ralrimi φ x A x A B x < a B < a
15 rabbi x A x A B x < a B < a x A | x A B x < a = x A | B < a
16 14 15 sylib φ x A | x A B x < a = x A | B < a
17 16 adantr φ a x A | x A B x < a = x A | B < a
18 17 6 eqeltrd φ a x A | x A B x < a S 𝑡 A
19 7 2 3 4 9 18 issmfdf φ x A B SMblFn S