| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimltxr.x |
|- F/_ x F |
| 2 |
|
smfpimltxr.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfpimltxr.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 4 |
|
smfpimltxr.d |
|- D = dom F |
| 5 |
|
smfpimltxr.a |
|- ( ph -> A e. RR* ) |
| 6 |
|
breq2 |
|- ( A = +oo -> ( ( F ` x ) < A <-> ( F ` x ) < +oo ) ) |
| 7 |
6
|
rabbidv |
|- ( A = +oo -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < +oo } ) |
| 8 |
1
|
nfdm |
|- F/_ x dom F |
| 9 |
4 8
|
nfcxfr |
|- F/_ x D |
| 10 |
2 3 4
|
smff |
|- ( ph -> F : D --> RR ) |
| 11 |
1 9 10
|
pimltpnf2f |
|- ( ph -> { x e. D | ( F ` x ) < +oo } = D ) |
| 12 |
7 11
|
sylan9eqr |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < A } = D ) |
| 13 |
2 3 4
|
smfdmss |
|- ( ph -> D C_ U. S ) |
| 14 |
2 13
|
subsaluni |
|- ( ph -> D e. ( S |`t D ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ A = +oo ) -> D e. ( S |`t D ) ) |
| 16 |
12 15
|
eqeltrd |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 17 |
|
breq2 |
|- ( A = -oo -> ( ( F ` x ) < A <-> ( F ` x ) < -oo ) ) |
| 18 |
17
|
rabbidv |
|- ( A = -oo -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < -oo } ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < -oo } ) |
| 20 |
10
|
adantr |
|- ( ( ph /\ A = -oo ) -> F : D --> RR ) |
| 21 |
1 9 20
|
pimltmnf2f |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < -oo } = (/) ) |
| 22 |
19 21
|
eqtrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } = (/) ) |
| 23 |
3
|
dmexd |
|- ( ph -> dom F e. _V ) |
| 24 |
4 23
|
eqeltrid |
|- ( ph -> D e. _V ) |
| 25 |
|
eqid |
|- ( S |`t D ) = ( S |`t D ) |
| 26 |
2 24 25
|
subsalsal |
|- ( ph -> ( S |`t D ) e. SAlg ) |
| 27 |
26
|
0sald |
|- ( ph -> (/) e. ( S |`t D ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ A = -oo ) -> (/) e. ( S |`t D ) ) |
| 29 |
22 28
|
eqeltrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 30 |
29
|
adantlr |
|- ( ( ( ph /\ A =/= +oo ) /\ A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 31 |
|
simpll |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> ph ) |
| 32 |
31 5
|
syl |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A e. RR* ) |
| 33 |
|
neqne |
|- ( -. A = -oo -> A =/= -oo ) |
| 34 |
33
|
adantl |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A =/= -oo ) |
| 35 |
|
simplr |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A =/= +oo ) |
| 36 |
32 34 35
|
xrred |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A e. RR ) |
| 37 |
2
|
adantr |
|- ( ( ph /\ A e. RR ) -> S e. SAlg ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> F e. ( SMblFn ` S ) ) |
| 39 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
| 40 |
1 37 38 4 39
|
smfpreimaltf |
|- ( ( ph /\ A e. RR ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 41 |
31 36 40
|
syl2anc |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 42 |
30 41
|
pm2.61dan |
|- ( ( ph /\ A =/= +oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 43 |
16 42
|
pm2.61dane |
|- ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |