Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltxr.x |
|- F/_ x F |
2 |
|
smfpimltxr.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfpimltxr.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
4 |
|
smfpimltxr.d |
|- D = dom F |
5 |
|
smfpimltxr.a |
|- ( ph -> A e. RR* ) |
6 |
|
breq2 |
|- ( A = +oo -> ( ( F ` x ) < A <-> ( F ` x ) < +oo ) ) |
7 |
6
|
rabbidv |
|- ( A = +oo -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < +oo } ) |
8 |
7
|
adantl |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < +oo } ) |
9 |
1 2 4
|
issmff |
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) ) |
10 |
3 9
|
mpbid |
|- ( ph -> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
11 |
10
|
simp2d |
|- ( ph -> F : D --> RR ) |
12 |
1 11
|
pimltpnf2 |
|- ( ph -> { x e. D | ( F ` x ) < +oo } = D ) |
13 |
12
|
adantr |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < +oo } = D ) |
14 |
|
eqidd |
|- ( ( ph /\ A = +oo ) -> D = D ) |
15 |
8 13 14
|
3eqtrd |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < A } = D ) |
16 |
10
|
simp1d |
|- ( ph -> D C_ U. S ) |
17 |
2 16
|
restuni4 |
|- ( ph -> U. ( S |`t D ) = D ) |
18 |
17
|
eqcomd |
|- ( ph -> D = U. ( S |`t D ) ) |
19 |
3
|
dmexd |
|- ( ph -> dom F e. _V ) |
20 |
4 19
|
eqeltrid |
|- ( ph -> D e. _V ) |
21 |
|
eqid |
|- ( S |`t D ) = ( S |`t D ) |
22 |
2 20 21
|
subsalsal |
|- ( ph -> ( S |`t D ) e. SAlg ) |
23 |
22
|
salunid |
|- ( ph -> U. ( S |`t D ) e. ( S |`t D ) ) |
24 |
18 23
|
eqeltrd |
|- ( ph -> D e. ( S |`t D ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ A = +oo ) -> D e. ( S |`t D ) ) |
26 |
15 25
|
eqeltrd |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
27 |
|
neqne |
|- ( -. A = +oo -> A =/= +oo ) |
28 |
27
|
adantl |
|- ( ( ph /\ -. A = +oo ) -> A =/= +oo ) |
29 |
|
breq2 |
|- ( A = -oo -> ( ( F ` x ) < A <-> ( F ` x ) < -oo ) ) |
30 |
29
|
rabbidv |
|- ( A = -oo -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < -oo } ) |
31 |
30
|
adantl |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < -oo } ) |
32 |
11
|
adantr |
|- ( ( ph /\ A = -oo ) -> F : D --> RR ) |
33 |
1 32
|
pimltmnf2 |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < -oo } = (/) ) |
34 |
31 33
|
eqtrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } = (/) ) |
35 |
22
|
0sald |
|- ( ph -> (/) e. ( S |`t D ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ A = -oo ) -> (/) e. ( S |`t D ) ) |
37 |
34 36
|
eqeltrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
38 |
37
|
adantlr |
|- ( ( ( ph /\ A =/= +oo ) /\ A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
39 |
|
simpll |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> ph ) |
40 |
39 5
|
syl |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A e. RR* ) |
41 |
|
neqne |
|- ( -. A = -oo -> A =/= -oo ) |
42 |
41
|
adantl |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A =/= -oo ) |
43 |
|
simplr |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A =/= +oo ) |
44 |
40 42 43
|
xrred |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A e. RR ) |
45 |
2
|
adantr |
|- ( ( ph /\ A e. RR ) -> S e. SAlg ) |
46 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> F e. ( SMblFn ` S ) ) |
47 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
48 |
1 45 46 4 47
|
smfpreimaltf |
|- ( ( ph /\ A e. RR ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
49 |
39 44 48
|
syl2anc |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
50 |
38 49
|
pm2.61dan |
|- ( ( ph /\ A =/= +oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
51 |
28 50
|
syldan |
|- ( ( ph /\ -. A = +oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
52 |
26 51
|
pm2.61dan |
|- ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |