Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltxr.x |
|- F/_ x F |
2 |
|
smfpimltxr.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfpimltxr.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
4 |
|
smfpimltxr.d |
|- D = dom F |
5 |
|
smfpimltxr.a |
|- ( ph -> A e. RR* ) |
6 |
|
breq2 |
|- ( A = +oo -> ( ( F ` x ) < A <-> ( F ` x ) < +oo ) ) |
7 |
6
|
rabbidv |
|- ( A = +oo -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < +oo } ) |
8 |
1
|
nfdm |
|- F/_ x dom F |
9 |
4 8
|
nfcxfr |
|- F/_ x D |
10 |
2 3 4
|
smff |
|- ( ph -> F : D --> RR ) |
11 |
1 9 10
|
pimltpnf2f |
|- ( ph -> { x e. D | ( F ` x ) < +oo } = D ) |
12 |
7 11
|
sylan9eqr |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < A } = D ) |
13 |
2 3 4
|
smfdmss |
|- ( ph -> D C_ U. S ) |
14 |
2 13
|
subsaluni |
|- ( ph -> D e. ( S |`t D ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ A = +oo ) -> D e. ( S |`t D ) ) |
16 |
12 15
|
eqeltrd |
|- ( ( ph /\ A = +oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
17 |
|
breq2 |
|- ( A = -oo -> ( ( F ` x ) < A <-> ( F ` x ) < -oo ) ) |
18 |
17
|
rabbidv |
|- ( A = -oo -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < -oo } ) |
19 |
18
|
adantl |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } = { x e. D | ( F ` x ) < -oo } ) |
20 |
10
|
adantr |
|- ( ( ph /\ A = -oo ) -> F : D --> RR ) |
21 |
1 9 20
|
pimltmnf2f |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < -oo } = (/) ) |
22 |
19 21
|
eqtrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } = (/) ) |
23 |
3
|
dmexd |
|- ( ph -> dom F e. _V ) |
24 |
4 23
|
eqeltrid |
|- ( ph -> D e. _V ) |
25 |
|
eqid |
|- ( S |`t D ) = ( S |`t D ) |
26 |
2 24 25
|
subsalsal |
|- ( ph -> ( S |`t D ) e. SAlg ) |
27 |
26
|
0sald |
|- ( ph -> (/) e. ( S |`t D ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ A = -oo ) -> (/) e. ( S |`t D ) ) |
29 |
22 28
|
eqeltrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
30 |
29
|
adantlr |
|- ( ( ( ph /\ A =/= +oo ) /\ A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
31 |
|
simpll |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> ph ) |
32 |
31 5
|
syl |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A e. RR* ) |
33 |
|
neqne |
|- ( -. A = -oo -> A =/= -oo ) |
34 |
33
|
adantl |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A =/= -oo ) |
35 |
|
simplr |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A =/= +oo ) |
36 |
32 34 35
|
xrred |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> A e. RR ) |
37 |
2
|
adantr |
|- ( ( ph /\ A e. RR ) -> S e. SAlg ) |
38 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> F e. ( SMblFn ` S ) ) |
39 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
40 |
1 37 38 4 39
|
smfpreimaltf |
|- ( ( ph /\ A e. RR ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
41 |
31 36 40
|
syl2anc |
|- ( ( ( ph /\ A =/= +oo ) /\ -. A = -oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
42 |
30 41
|
pm2.61dan |
|- ( ( ph /\ A =/= +oo ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
43 |
16 42
|
pm2.61dane |
|- ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |