Metamath Proof Explorer


Theorem smfpimltmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimltmpt.x x φ
smfpimltmpt.s φ S SAlg
smfpimltmpt.b φ x A B V
smfpimltmpt.f φ x A B SMblFn S
smfpimltmpt.r φ R
Assertion smfpimltmpt φ x A | B < R S 𝑡 A

Proof

Step Hyp Ref Expression
1 smfpimltmpt.x x φ
2 smfpimltmpt.s φ S SAlg
3 smfpimltmpt.b φ x A B V
4 smfpimltmpt.f φ x A B SMblFn S
5 smfpimltmpt.r φ R
6 nfmpt1 _ x x A B
7 eqid dom x A B = dom x A B
8 6 2 4 7 5 smfpreimaltf φ x dom x A B | x A B x < R S 𝑡 dom x A B
9 eqid x A B = x A B
10 1 9 3 dmmptdf φ dom x A B = A
11 6 nfdm _ x dom x A B
12 nfcv _ x A
13 11 12 rabeqf dom x A B = A x dom x A B | x A B x < R = x A | x A B x < R
14 10 13 syl φ x dom x A B | x A B x < R = x A | x A B x < R
15 9 a1i φ x A B = x A B
16 15 3 fvmpt2d φ x A x A B x = B
17 16 breq1d φ x A x A B x < R B < R
18 1 17 rabbida φ x A | x A B x < R = x A | B < R
19 eqidd φ x A | B < R = x A | B < R
20 14 18 19 3eqtrrd φ x A | B < R = x dom x A B | x A B x < R
21 10 eqcomd φ A = dom x A B
22 21 oveq2d φ S 𝑡 A = S 𝑡 dom x A B
23 20 22 eleq12d φ x A | B < R S 𝑡 A x dom x A B | x A B x < R S 𝑡 dom x A B
24 8 23 mpbird φ x A | B < R S 𝑡 A