| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimltmpt.x |
|- F/ x ph |
| 2 |
|
smfpimltmpt.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfpimltmpt.b |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 4 |
|
smfpimltmpt.f |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 5 |
|
smfpimltmpt.r |
|- ( ph -> R e. RR ) |
| 6 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
| 7 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
| 8 |
6 2 4 7 5
|
smfpreimaltf |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) |
| 9 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 10 |
1 9 3
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
| 11 |
6
|
nfdm |
|- F/_ x dom ( x e. A |-> B ) |
| 12 |
|
nfcv |
|- F/_ x A |
| 13 |
11 12
|
rabeqf |
|- ( dom ( x e. A |-> B ) = A -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | ( ( x e. A |-> B ) ` x ) < R } ) |
| 14 |
10 13
|
syl |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | ( ( x e. A |-> B ) ` x ) < R } ) |
| 15 |
9
|
a1i |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
| 16 |
15 3
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 17 |
16
|
breq1d |
|- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) < R <-> B < R ) ) |
| 18 |
1 17
|
rabbida |
|- ( ph -> { x e. A | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | B < R } ) |
| 19 |
|
eqidd |
|- ( ph -> { x e. A | B < R } = { x e. A | B < R } ) |
| 20 |
14 18 19
|
3eqtrrd |
|- ( ph -> { x e. A | B < R } = { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } ) |
| 21 |
10
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( S |`t A ) = ( S |`t dom ( x e. A |-> B ) ) ) |
| 23 |
20 22
|
eleq12d |
|- ( ph -> ( { x e. A | B < R } e. ( S |`t A ) <-> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) ) |
| 24 |
8 23
|
mpbird |
|- ( ph -> { x e. A | B < R } e. ( S |`t A ) ) |