Metamath Proof Explorer


Theorem issmfle

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be b subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (ii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfle.s φSSAlg
issmfle.d D=domF
Assertion issmfle φFSMblFnSDSF:DaxD|FxaS𝑡D

Proof

Step Hyp Ref Expression
1 issmfle.s φSSAlg
2 issmfle.d D=domF
3 1 adantr φFSMblFnSSSAlg
4 simpr φFSMblFnSFSMblFnS
5 3 4 2 smfdmss φFSMblFnSDS
6 3 4 2 smff φFSMblFnSF:D
7 nfv bφ
8 nfv bFSMblFnS
9 7 8 nfan bφFSMblFnS
10 nfv yφ
11 nfv yFSMblFnS
12 10 11 nfan yφFSMblFnS
13 nfv yb
14 12 13 nfan yφFSMblFnSb
15 nfv cφFSMblFnSb
16 1 uniexd φSV
17 16 adantr φDSSV
18 simpr φDSDS
19 17 18 ssexd φDSDV
20 5 19 syldan φFSMblFnSDV
21 eqid S𝑡D=S𝑡D
22 3 20 21 subsalsal φFSMblFnSS𝑡DSAlg
23 22 adantr φFSMblFnSbS𝑡DSAlg
24 6 frexr φFSMblFnSF:D*
25 24 adantr φFSMblFnSbF:D*
26 25 ffvelrnda φFSMblFnSbyDFy*
27 3 adantr φFSMblFnScSSAlg
28 4 adantr φFSMblFnScFSMblFnS
29 simpr φFSMblFnScc
30 27 28 2 29 smfpreimalt φFSMblFnScyD|Fy<cS𝑡D
31 30 adantlr φFSMblFnSbcyD|Fy<cS𝑡D
32 simpr φFSMblFnSbb
33 14 15 23 26 31 32 salpreimaltle φFSMblFnSbyD|FybS𝑡D
34 33 ex φFSMblFnSbyD|FybS𝑡D
35 9 34 ralrimi φFSMblFnSbyD|FybS𝑡D
36 5 6 35 3jca φFSMblFnSDSF:DbyD|FybS𝑡D
37 36 ex φFSMblFnSDSF:DbyD|FybS𝑡D
38 nfv yDS
39 nfv yF:D
40 nfcv _y
41 nfrab1 _yyD|Fyb
42 nfcv _yS𝑡D
43 41 42 nfel yyD|FybS𝑡D
44 40 43 nfralw ybyD|FybS𝑡D
45 38 39 44 nf3an yDSF:DbyD|FybS𝑡D
46 10 45 nfan yφDSF:DbyD|FybS𝑡D
47 nfv bDS
48 nfv bF:D
49 nfra1 bbyD|FybS𝑡D
50 47 48 49 nf3an bDSF:DbyD|FybS𝑡D
51 7 50 nfan bφDSF:DbyD|FybS𝑡D
52 1 adantr φDSF:DbyD|FybS𝑡DSSAlg
53 simpr1 φDSF:DbyD|FybS𝑡DDS
54 simpr2 φDSF:DbyD|FybS𝑡DF:D
55 rspa byD|FybS𝑡DbyD|FybS𝑡D
56 55 3ad2antl3 DSF:DbyD|FybS𝑡DbyD|FybS𝑡D
57 56 adantll φDSF:DbyD|FybS𝑡DbyD|FybS𝑡D
58 46 51 52 2 53 54 57 issmflelem φDSF:DbyD|FybS𝑡DFSMblFnS
59 58 ex φDSF:DbyD|FybS𝑡DFSMblFnS
60 37 59 impbid φFSMblFnSDSF:DbyD|FybS𝑡D
61 breq2 b=aFybFya
62 61 rabbidv b=ayD|Fyb=yD|Fya
63 fveq2 y=xFy=Fx
64 63 breq1d y=xFyaFxa
65 64 cbvrabv yD|Fya=xD|Fxa
66 65 a1i b=ayD|Fya=xD|Fxa
67 62 66 eqtrd b=ayD|Fyb=xD|Fxa
68 67 eleq1d b=ayD|FybS𝑡DxD|FxaS𝑡D
69 68 cbvralvw byD|FybS𝑡DaxD|FxaS𝑡D
70 69 3anbi3i DSF:DbyD|FybS𝑡DDSF:DaxD|FxaS𝑡D
71 70 a1i φDSF:DbyD|FybS𝑡DDSF:DaxD|FxaS𝑡D
72 60 71 bitrd φFSMblFnSDSF:DaxD|FxaS𝑡D