Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be b subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (ii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issmfle.s | |
|
issmfle.d | |
||
Assertion | issmfle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfle.s | |
|
2 | issmfle.d | |
|
3 | 1 | adantr | |
4 | simpr | |
|
5 | 3 4 2 | smfdmss | |
6 | 3 4 2 | smff | |
7 | nfv | |
|
8 | nfv | |
|
9 | 7 8 | nfan | |
10 | nfv | |
|
11 | nfv | |
|
12 | 10 11 | nfan | |
13 | nfv | |
|
14 | 12 13 | nfan | |
15 | nfv | |
|
16 | 1 | uniexd | |
17 | 16 | adantr | |
18 | simpr | |
|
19 | 17 18 | ssexd | |
20 | 5 19 | syldan | |
21 | eqid | |
|
22 | 3 20 21 | subsalsal | |
23 | 22 | adantr | |
24 | 6 | frexr | |
25 | 24 | adantr | |
26 | 25 | ffvelrnda | |
27 | 3 | adantr | |
28 | 4 | adantr | |
29 | simpr | |
|
30 | 27 28 2 29 | smfpreimalt | |
31 | 30 | adantlr | |
32 | simpr | |
|
33 | 14 15 23 26 31 32 | salpreimaltle | |
34 | 33 | ex | |
35 | 9 34 | ralrimi | |
36 | 5 6 35 | 3jca | |
37 | 36 | ex | |
38 | nfv | |
|
39 | nfv | |
|
40 | nfcv | |
|
41 | nfrab1 | |
|
42 | nfcv | |
|
43 | 41 42 | nfel | |
44 | 40 43 | nfralw | |
45 | 38 39 44 | nf3an | |
46 | 10 45 | nfan | |
47 | nfv | |
|
48 | nfv | |
|
49 | nfra1 | |
|
50 | 47 48 49 | nf3an | |
51 | 7 50 | nfan | |
52 | 1 | adantr | |
53 | simpr1 | |
|
54 | simpr2 | |
|
55 | rspa | |
|
56 | 55 | 3ad2antl3 | |
57 | 56 | adantll | |
58 | 46 51 52 2 53 54 57 | issmflelem | |
59 | 58 | ex | |
60 | 37 59 | impbid | |
61 | breq2 | |
|
62 | 61 | rabbidv | |
63 | fveq2 | |
|
64 | 63 | breq1d | |
65 | 64 | cbvrabv | |
66 | 65 | a1i | |
67 | 62 66 | eqtrd | |
68 | 67 | eleq1d | |
69 | 68 | cbvralvw | |
70 | 69 | 3anbi3i | |
71 | 70 | a1i | |
72 | 60 71 | bitrd | |