| Step |
Hyp |
Ref |
Expression |
| 1 |
|
incsmf.a |
|- ( ph -> A C_ RR ) |
| 2 |
|
incsmf.f |
|- ( ph -> F : A --> RR ) |
| 3 |
|
incsmf.i |
|- ( ph -> A. x e. A A. y e. A ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) ) |
| 4 |
|
incsmf.j |
|- J = ( topGen ` ran (,) ) |
| 5 |
|
incsmf.b |
|- B = ( SalGen ` J ) |
| 6 |
|
nfv |
|- F/ a ph |
| 7 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 8 |
4 7
|
eqeltri |
|- J e. Top |
| 9 |
8
|
a1i |
|- ( ph -> J e. Top ) |
| 10 |
9 5
|
salgencld |
|- ( ph -> B e. SAlg ) |
| 11 |
9 5
|
unisalgen2 |
|- ( ph -> U. B = U. J ) |
| 12 |
4
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
| 13 |
12
|
a1i |
|- ( ph -> U. J = U. ( topGen ` ran (,) ) ) |
| 14 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 15 |
14
|
eqcomi |
|- U. ( topGen ` ran (,) ) = RR |
| 16 |
15
|
a1i |
|- ( ph -> U. ( topGen ` ran (,) ) = RR ) |
| 17 |
11 13 16
|
3eqtrrd |
|- ( ph -> RR = U. B ) |
| 18 |
1 17
|
sseqtrd |
|- ( ph -> A C_ U. B ) |
| 19 |
|
nfv |
|- F/ w ( ph /\ a e. RR ) |
| 20 |
|
nfv |
|- F/ z ( ph /\ a e. RR ) |
| 21 |
1
|
adantr |
|- ( ( ph /\ a e. RR ) -> A C_ RR ) |
| 22 |
2
|
frexr |
|- ( ph -> F : A --> RR* ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : A --> RR* ) |
| 24 |
|
breq1 |
|- ( x = w -> ( x <_ y <-> w <_ y ) ) |
| 25 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
| 26 |
25
|
breq1d |
|- ( x = w -> ( ( F ` x ) <_ ( F ` y ) <-> ( F ` w ) <_ ( F ` y ) ) ) |
| 27 |
24 26
|
imbi12d |
|- ( x = w -> ( ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) <-> ( w <_ y -> ( F ` w ) <_ ( F ` y ) ) ) ) |
| 28 |
|
breq2 |
|- ( y = z -> ( w <_ y <-> w <_ z ) ) |
| 29 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
| 30 |
29
|
breq2d |
|- ( y = z -> ( ( F ` w ) <_ ( F ` y ) <-> ( F ` w ) <_ ( F ` z ) ) ) |
| 31 |
28 30
|
imbi12d |
|- ( y = z -> ( ( w <_ y -> ( F ` w ) <_ ( F ` y ) ) <-> ( w <_ z -> ( F ` w ) <_ ( F ` z ) ) ) ) |
| 32 |
27 31
|
cbvral2vw |
|- ( A. x e. A A. y e. A ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) <-> A. w e. A A. z e. A ( w <_ z -> ( F ` w ) <_ ( F ` z ) ) ) |
| 33 |
3 32
|
sylib |
|- ( ph -> A. w e. A A. z e. A ( w <_ z -> ( F ` w ) <_ ( F ` z ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ a e. RR ) -> A. w e. A A. z e. A ( w <_ z -> ( F ` w ) <_ ( F ` z ) ) ) |
| 35 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. RR* ) |
| 37 |
25
|
breq1d |
|- ( x = w -> ( ( F ` x ) < a <-> ( F ` w ) < a ) ) |
| 38 |
37
|
cbvrabv |
|- { x e. A | ( F ` x ) < a } = { w e. A | ( F ` w ) < a } |
| 39 |
|
eqid |
|- sup ( { x e. A | ( F ` x ) < a } , RR* , < ) = sup ( { x e. A | ( F ` x ) < a } , RR* , < ) |
| 40 |
|
eqid |
|- ( -oo (,) sup ( { x e. A | ( F ` x ) < a } , RR* , < ) ) = ( -oo (,) sup ( { x e. A | ( F ` x ) < a } , RR* , < ) ) |
| 41 |
|
eqid |
|- ( -oo (,] sup ( { x e. A | ( F ` x ) < a } , RR* , < ) ) = ( -oo (,] sup ( { x e. A | ( F ` x ) < a } , RR* , < ) ) |
| 42 |
19 20 21 23 34 4 5 36 38 39 40 41
|
incsmflem |
|- ( ( ph /\ a e. RR ) -> E. b e. B { x e. A | ( F ` x ) < a } = ( b i^i A ) ) |
| 43 |
|
reex |
|- RR e. _V |
| 44 |
43
|
a1i |
|- ( ph -> RR e. _V ) |
| 45 |
44 1
|
ssexd |
|- ( ph -> A e. _V ) |
| 46 |
|
elrest |
|- ( ( B e. SAlg /\ A e. _V ) -> ( { x e. A | ( F ` x ) < a } e. ( B |`t A ) <-> E. b e. B { x e. A | ( F ` x ) < a } = ( b i^i A ) ) ) |
| 47 |
10 45 46
|
syl2anc |
|- ( ph -> ( { x e. A | ( F ` x ) < a } e. ( B |`t A ) <-> E. b e. B { x e. A | ( F ` x ) < a } = ( b i^i A ) ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( { x e. A | ( F ` x ) < a } e. ( B |`t A ) <-> E. b e. B { x e. A | ( F ` x ) < a } = ( b i^i A ) ) ) |
| 49 |
42 48
|
mpbird |
|- ( ( ph /\ a e. RR ) -> { x e. A | ( F ` x ) < a } e. ( B |`t A ) ) |
| 50 |
6 10 18 2 49
|
issmfd |
|- ( ph -> F e. ( SMblFn ` B ) ) |