Metamath Proof Explorer


Theorem nsssmfmbflem

Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses nsssmfmbflem.s 𝑆 = dom vol
nsssmfmbflem.x ( 𝜑𝑋 ⊆ ℝ )
nsssmfmbflem.n ( 𝜑 → ¬ 𝑋𝑆 )
nsssmfmbflem.f 𝐹 = ( 𝑥𝑋 ↦ 0 )
Assertion nsssmfmbflem ( 𝜑 → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) )

Proof

Step Hyp Ref Expression
1 nsssmfmbflem.s 𝑆 = dom vol
2 nsssmfmbflem.x ( 𝜑𝑋 ⊆ ℝ )
3 nsssmfmbflem.n ( 𝜑 → ¬ 𝑋𝑆 )
4 nsssmfmbflem.f 𝐹 = ( 𝑥𝑋 ↦ 0 )
5 0red ( ( 𝜑𝑥𝑋 ) → 0 ∈ ℝ )
6 5 4 fmptd ( 𝜑𝐹 : 𝑋 ⟶ ℝ )
7 reex ℝ ∈ V
8 7 a1i ( 𝜑 → ℝ ∈ V )
9 8 2 ssexd ( 𝜑𝑋 ∈ V )
10 6 9 fexd ( 𝜑𝐹 ∈ V )
11 1 2 3 4 smfmbfcex ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) )
12 eleq1 ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ↔ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) )
13 eleq1 ( 𝑓 = 𝐹 → ( 𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn ) )
14 13 notbid ( 𝑓 = 𝐹 → ( ¬ 𝑓 ∈ MblFn ↔ ¬ 𝐹 ∈ MblFn ) )
15 12 14 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ↔ ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) ) )
16 15 spcegv ( 𝐹 ∈ V → ( ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ) )
17 10 11 16 sylc ( 𝜑 → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) )