Step |
Hyp |
Ref |
Expression |
1 |
|
nsssmfmbflem.s |
⊢ 𝑆 = dom vol |
2 |
|
nsssmfmbflem.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
3 |
|
nsssmfmbflem.n |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑆 ) |
4 |
|
nsssmfmbflem.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
5 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℝ ) |
6 |
5 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
7 |
|
reex |
⊢ ℝ ∈ V |
8 |
7
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
9 |
8 2
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
10 |
6 9
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
11 |
1 2 3 4
|
smfmbfcex |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) ) |
12 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ↔ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ) |
13 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn ) ) |
14 |
13
|
notbid |
⊢ ( 𝑓 = 𝐹 → ( ¬ 𝑓 ∈ MblFn ↔ ¬ 𝐹 ∈ MblFn ) ) |
15 |
12 14
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ↔ ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) ) ) |
16 |
15
|
spcegv |
⊢ ( 𝐹 ∈ V → ( ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ) ) |
17 |
10 11 16
|
sylc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ) |