Step |
Hyp |
Ref |
Expression |
1 |
|
nsssmfmbf.1 |
⊢ 𝑆 = dom vol |
2 |
|
vitali2 |
⊢ dom vol ⊊ 𝒫 ℝ |
3 |
2
|
pssnssi |
⊢ ¬ 𝒫 ℝ ⊆ dom vol |
4 |
|
nss |
⊢ ( ¬ 𝒫 ℝ ⊆ dom vol ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) ) |
5 |
3 4
|
mpbi |
⊢ ∃ 𝑥 ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) |
6 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → 𝑥 ⊆ ℝ ) |
8 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ dom vol ) |
9 |
8
|
bicomi |
⊢ ( 𝑥 ∈ dom vol ↔ 𝑥 ∈ 𝑆 ) |
10 |
9
|
notbii |
⊢ ( ¬ 𝑥 ∈ dom vol ↔ ¬ 𝑥 ∈ 𝑆 ) |
11 |
10
|
biimpi |
⊢ ( ¬ 𝑥 ∈ dom vol → ¬ 𝑥 ∈ 𝑆 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → ¬ 𝑥 ∈ 𝑆 ) |
13 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑥 ↦ 0 ) = ( 𝑦 ∈ 𝑥 ↦ 0 ) |
14 |
1 7 12 13
|
nsssmfmbflem |
⊢ ( ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ) |
15 |
14
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ) |
16 |
5 15
|
ax-mp |
⊢ ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) |
17 |
|
nss |
⊢ ( ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn ↔ ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) ) |
18 |
16 17
|
mpbir |
⊢ ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn |