Metamath Proof Explorer


Theorem nsssmfmbf

Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis nsssmfmbf.1 𝑆 = dom vol
Assertion nsssmfmbf ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn

Proof

Step Hyp Ref Expression
1 nsssmfmbf.1 𝑆 = dom vol
2 vitali2 dom vol ⊊ 𝒫 ℝ
3 2 pssnssi ¬ 𝒫 ℝ ⊆ dom vol
4 nss ( ¬ 𝒫 ℝ ⊆ dom vol ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) )
5 3 4 mpbi 𝑥 ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol )
6 elpwi ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ )
7 6 adantr ( ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → 𝑥 ⊆ ℝ )
8 1 eleq2i ( 𝑥𝑆𝑥 ∈ dom vol )
9 8 bicomi ( 𝑥 ∈ dom vol ↔ 𝑥𝑆 )
10 9 notbii ( ¬ 𝑥 ∈ dom vol ↔ ¬ 𝑥𝑆 )
11 10 biimpi ( ¬ 𝑥 ∈ dom vol → ¬ 𝑥𝑆 )
12 11 adantl ( ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → ¬ 𝑥𝑆 )
13 eqid ( 𝑦𝑥 ↦ 0 ) = ( 𝑦𝑥 ↦ 0 )
14 1 7 12 13 nsssmfmbflem ( ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) )
15 14 exlimiv ( ∃ 𝑥 ( 𝑥 ∈ 𝒫 ℝ ∧ ¬ 𝑥 ∈ dom vol ) → ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) )
16 5 15 ax-mp 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn )
17 nss ( ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn ↔ ∃ 𝑓 ( 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝑓 ∈ MblFn ) )
18 16 17 mpbir ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn