Metamath Proof Explorer


Theorem nsssmfmbf

Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis nsssmfmbf.1
|- S = dom vol
Assertion nsssmfmbf
|- -. ( SMblFn ` S ) C_ MblFn

Proof

Step Hyp Ref Expression
1 nsssmfmbf.1
 |-  S = dom vol
2 vitali2
 |-  dom vol C. ~P RR
3 2 pssnssi
 |-  -. ~P RR C_ dom vol
4 nss
 |-  ( -. ~P RR C_ dom vol <-> E. x ( x e. ~P RR /\ -. x e. dom vol ) )
5 3 4 mpbi
 |-  E. x ( x e. ~P RR /\ -. x e. dom vol )
6 elpwi
 |-  ( x e. ~P RR -> x C_ RR )
7 6 adantr
 |-  ( ( x e. ~P RR /\ -. x e. dom vol ) -> x C_ RR )
8 1 eleq2i
 |-  ( x e. S <-> x e. dom vol )
9 8 bicomi
 |-  ( x e. dom vol <-> x e. S )
10 9 notbii
 |-  ( -. x e. dom vol <-> -. x e. S )
11 10 biimpi
 |-  ( -. x e. dom vol -> -. x e. S )
12 11 adantl
 |-  ( ( x e. ~P RR /\ -. x e. dom vol ) -> -. x e. S )
13 eqid
 |-  ( y e. x |-> 0 ) = ( y e. x |-> 0 )
14 1 7 12 13 nsssmfmbflem
 |-  ( ( x e. ~P RR /\ -. x e. dom vol ) -> E. f ( f e. ( SMblFn ` S ) /\ -. f e. MblFn ) )
15 14 exlimiv
 |-  ( E. x ( x e. ~P RR /\ -. x e. dom vol ) -> E. f ( f e. ( SMblFn ` S ) /\ -. f e. MblFn ) )
16 5 15 ax-mp
 |-  E. f ( f e. ( SMblFn ` S ) /\ -. f e. MblFn )
17 nss
 |-  ( -. ( SMblFn ` S ) C_ MblFn <-> E. f ( f e. ( SMblFn ` S ) /\ -. f e. MblFn ) )
18 16 17 mpbir
 |-  -. ( SMblFn ` S ) C_ MblFn