Metamath Proof Explorer


Theorem smfpimgtxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses smfpimgtxr.x
|- F/_ x F
smfpimgtxr.s
|- ( ph -> S e. SAlg )
smfpimgtxr.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfpimgtxr.d
|- D = dom F
smfpimgtxr.a
|- ( ph -> A e. RR* )
Assertion smfpimgtxr
|- ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )

Proof

Step Hyp Ref Expression
1 smfpimgtxr.x
 |-  F/_ x F
2 smfpimgtxr.s
 |-  ( ph -> S e. SAlg )
3 smfpimgtxr.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
4 smfpimgtxr.d
 |-  D = dom F
5 smfpimgtxr.a
 |-  ( ph -> A e. RR* )
6 breq1
 |-  ( A = -oo -> ( A < ( F ` x ) <-> -oo < ( F ` x ) ) )
7 6 rabbidv
 |-  ( A = -oo -> { x e. D | A < ( F ` x ) } = { x e. D | -oo < ( F ` x ) } )
8 1 nfdm
 |-  F/_ x dom F
9 4 8 nfcxfr
 |-  F/_ x D
10 nfcv
 |-  F/_ y D
11 nfv
 |-  F/ y -oo < ( F ` x )
12 nfcv
 |-  F/_ x -oo
13 nfcv
 |-  F/_ x <
14 nfcv
 |-  F/_ x y
15 1 14 nffv
 |-  F/_ x ( F ` y )
16 12 13 15 nfbr
 |-  F/ x -oo < ( F ` y )
17 fveq2
 |-  ( x = y -> ( F ` x ) = ( F ` y ) )
18 17 breq2d
 |-  ( x = y -> ( -oo < ( F ` x ) <-> -oo < ( F ` y ) ) )
19 9 10 11 16 18 cbvrabw
 |-  { x e. D | -oo < ( F ` x ) } = { y e. D | -oo < ( F ` y ) }
20 nfv
 |-  F/ y ph
21 2 3 4 smff
 |-  ( ph -> F : D --> RR )
22 21 ffvelcdmda
 |-  ( ( ph /\ y e. D ) -> ( F ` y ) e. RR )
23 20 22 pimgtmnf
 |-  ( ph -> { y e. D | -oo < ( F ` y ) } = D )
24 19 23 eqtrid
 |-  ( ph -> { x e. D | -oo < ( F ` x ) } = D )
25 7 24 sylan9eqr
 |-  ( ( ph /\ A = -oo ) -> { x e. D | A < ( F ` x ) } = D )
26 2 3 4 smfdmss
 |-  ( ph -> D C_ U. S )
27 2 26 subsaluni
 |-  ( ph -> D e. ( S |`t D ) )
28 27 adantr
 |-  ( ( ph /\ A = -oo ) -> D e. ( S |`t D ) )
29 25 28 eqeltrd
 |-  ( ( ph /\ A = -oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )
30 breq1
 |-  ( A = +oo -> ( A < ( F ` x ) <-> +oo < ( F ` x ) ) )
31 30 rabbidv
 |-  ( A = +oo -> { x e. D | A < ( F ` x ) } = { x e. D | +oo < ( F ` x ) } )
32 1 9 21 pimgtpnf2f
 |-  ( ph -> { x e. D | +oo < ( F ` x ) } = (/) )
33 31 32 sylan9eqr
 |-  ( ( ph /\ A = +oo ) -> { x e. D | A < ( F ` x ) } = (/) )
34 3 dmexd
 |-  ( ph -> dom F e. _V )
35 4 34 eqeltrid
 |-  ( ph -> D e. _V )
36 eqid
 |-  ( S |`t D ) = ( S |`t D )
37 2 35 36 subsalsal
 |-  ( ph -> ( S |`t D ) e. SAlg )
38 37 0sald
 |-  ( ph -> (/) e. ( S |`t D ) )
39 38 adantr
 |-  ( ( ph /\ A = +oo ) -> (/) e. ( S |`t D ) )
40 33 39 eqeltrd
 |-  ( ( ph /\ A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )
41 40 adantlr
 |-  ( ( ( ph /\ A =/= -oo ) /\ A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )
42 simpll
 |-  ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> ph )
43 42 5 syl
 |-  ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A e. RR* )
44 simplr
 |-  ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A =/= -oo )
45 neqne
 |-  ( -. A = +oo -> A =/= +oo )
46 45 adantl
 |-  ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A =/= +oo )
47 43 44 46 xrred
 |-  ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A e. RR )
48 2 adantr
 |-  ( ( ph /\ A e. RR ) -> S e. SAlg )
49 3 adantr
 |-  ( ( ph /\ A e. RR ) -> F e. ( SMblFn ` S ) )
50 simpr
 |-  ( ( ph /\ A e. RR ) -> A e. RR )
51 1 48 49 4 50 smfpreimagtf
 |-  ( ( ph /\ A e. RR ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )
52 42 47 51 syl2anc
 |-  ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )
53 41 52 pm2.61dan
 |-  ( ( ph /\ A =/= -oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )
54 29 53 pm2.61dane
 |-  ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )