Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimgtxr.x |
|- F/_ x F |
2 |
|
smfpimgtxr.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfpimgtxr.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
4 |
|
smfpimgtxr.d |
|- D = dom F |
5 |
|
smfpimgtxr.a |
|- ( ph -> A e. RR* ) |
6 |
|
breq1 |
|- ( A = -oo -> ( A < ( F ` x ) <-> -oo < ( F ` x ) ) ) |
7 |
6
|
rabbidv |
|- ( A = -oo -> { x e. D | A < ( F ` x ) } = { x e. D | -oo < ( F ` x ) } ) |
8 |
7
|
adantl |
|- ( ( ph /\ A = -oo ) -> { x e. D | A < ( F ` x ) } = { x e. D | -oo < ( F ` x ) } ) |
9 |
1
|
nfdm |
|- F/_ x dom F |
10 |
4 9
|
nfcxfr |
|- F/_ x D |
11 |
|
nfcv |
|- F/_ y D |
12 |
|
nfv |
|- F/ y -oo < ( F ` x ) |
13 |
|
nfcv |
|- F/_ x -oo |
14 |
|
nfcv |
|- F/_ x < |
15 |
|
nfcv |
|- F/_ x y |
16 |
1 15
|
nffv |
|- F/_ x ( F ` y ) |
17 |
13 14 16
|
nfbr |
|- F/ x -oo < ( F ` y ) |
18 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
19 |
18
|
breq2d |
|- ( x = y -> ( -oo < ( F ` x ) <-> -oo < ( F ` y ) ) ) |
20 |
10 11 12 17 19
|
cbvrabw |
|- { x e. D | -oo < ( F ` x ) } = { y e. D | -oo < ( F ` y ) } |
21 |
20
|
a1i |
|- ( ph -> { x e. D | -oo < ( F ` x ) } = { y e. D | -oo < ( F ` y ) } ) |
22 |
|
nfv |
|- F/ y ph |
23 |
2 3 4
|
smff |
|- ( ph -> F : D --> RR ) |
24 |
23
|
adantr |
|- ( ( ph /\ y e. D ) -> F : D --> RR ) |
25 |
|
simpr |
|- ( ( ph /\ y e. D ) -> y e. D ) |
26 |
24 25
|
ffvelrnd |
|- ( ( ph /\ y e. D ) -> ( F ` y ) e. RR ) |
27 |
22 26
|
pimgtmnf |
|- ( ph -> { y e. D | -oo < ( F ` y ) } = D ) |
28 |
|
eqidd |
|- ( ph -> D = D ) |
29 |
21 27 28
|
3eqtrd |
|- ( ph -> { x e. D | -oo < ( F ` x ) } = D ) |
30 |
29
|
adantr |
|- ( ( ph /\ A = -oo ) -> { x e. D | -oo < ( F ` x ) } = D ) |
31 |
8 30
|
eqtrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | A < ( F ` x ) } = D ) |
32 |
2 3 4
|
smfdmss |
|- ( ph -> D C_ U. S ) |
33 |
2 32
|
restuni4 |
|- ( ph -> U. ( S |`t D ) = D ) |
34 |
33
|
eqcomd |
|- ( ph -> D = U. ( S |`t D ) ) |
35 |
3
|
dmexd |
|- ( ph -> dom F e. _V ) |
36 |
4 35
|
eqeltrid |
|- ( ph -> D e. _V ) |
37 |
|
eqid |
|- ( S |`t D ) = ( S |`t D ) |
38 |
2 36 37
|
subsalsal |
|- ( ph -> ( S |`t D ) e. SAlg ) |
39 |
38
|
salunid |
|- ( ph -> U. ( S |`t D ) e. ( S |`t D ) ) |
40 |
34 39
|
eqeltrd |
|- ( ph -> D e. ( S |`t D ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ A = -oo ) -> D e. ( S |`t D ) ) |
42 |
31 41
|
eqeltrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
43 |
|
neqne |
|- ( -. A = -oo -> A =/= -oo ) |
44 |
43
|
adantl |
|- ( ( ph /\ -. A = -oo ) -> A =/= -oo ) |
45 |
|
breq1 |
|- ( A = +oo -> ( A < ( F ` x ) <-> +oo < ( F ` x ) ) ) |
46 |
45
|
rabbidv |
|- ( A = +oo -> { x e. D | A < ( F ` x ) } = { x e. D | +oo < ( F ` x ) } ) |
47 |
46
|
adantl |
|- ( ( ph /\ A = +oo ) -> { x e. D | A < ( F ` x ) } = { x e. D | +oo < ( F ` x ) } ) |
48 |
1 23
|
pimgtpnf2 |
|- ( ph -> { x e. D | +oo < ( F ` x ) } = (/) ) |
49 |
48
|
adantr |
|- ( ( ph /\ A = +oo ) -> { x e. D | +oo < ( F ` x ) } = (/) ) |
50 |
47 49
|
eqtrd |
|- ( ( ph /\ A = +oo ) -> { x e. D | A < ( F ` x ) } = (/) ) |
51 |
38
|
0sald |
|- ( ph -> (/) e. ( S |`t D ) ) |
52 |
51
|
adantr |
|- ( ( ph /\ A = +oo ) -> (/) e. ( S |`t D ) ) |
53 |
50 52
|
eqeltrd |
|- ( ( ph /\ A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
54 |
53
|
adantlr |
|- ( ( ( ph /\ A =/= -oo ) /\ A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
55 |
|
simpll |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> ph ) |
56 |
55 5
|
syl |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A e. RR* ) |
57 |
|
simplr |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A =/= -oo ) |
58 |
|
neqne |
|- ( -. A = +oo -> A =/= +oo ) |
59 |
58
|
adantl |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A =/= +oo ) |
60 |
56 57 59
|
xrred |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A e. RR ) |
61 |
2
|
adantr |
|- ( ( ph /\ A e. RR ) -> S e. SAlg ) |
62 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> F e. ( SMblFn ` S ) ) |
63 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
64 |
1 61 62 4 63
|
smfpreimagtf |
|- ( ( ph /\ A e. RR ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
65 |
55 60 64
|
syl2anc |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
66 |
54 65
|
pm2.61dan |
|- ( ( ph /\ A =/= -oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
67 |
44 66
|
syldan |
|- ( ( ph /\ -. A = -oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
68 |
42 67
|
pm2.61dan |
|- ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |