| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimgtxr.x |
|- F/_ x F |
| 2 |
|
smfpimgtxr.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfpimgtxr.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 4 |
|
smfpimgtxr.d |
|- D = dom F |
| 5 |
|
smfpimgtxr.a |
|- ( ph -> A e. RR* ) |
| 6 |
|
breq1 |
|- ( A = -oo -> ( A < ( F ` x ) <-> -oo < ( F ` x ) ) ) |
| 7 |
6
|
rabbidv |
|- ( A = -oo -> { x e. D | A < ( F ` x ) } = { x e. D | -oo < ( F ` x ) } ) |
| 8 |
1
|
nfdm |
|- F/_ x dom F |
| 9 |
4 8
|
nfcxfr |
|- F/_ x D |
| 10 |
|
nfcv |
|- F/_ y D |
| 11 |
|
nfv |
|- F/ y -oo < ( F ` x ) |
| 12 |
|
nfcv |
|- F/_ x -oo |
| 13 |
|
nfcv |
|- F/_ x < |
| 14 |
|
nfcv |
|- F/_ x y |
| 15 |
1 14
|
nffv |
|- F/_ x ( F ` y ) |
| 16 |
12 13 15
|
nfbr |
|- F/ x -oo < ( F ` y ) |
| 17 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 18 |
17
|
breq2d |
|- ( x = y -> ( -oo < ( F ` x ) <-> -oo < ( F ` y ) ) ) |
| 19 |
9 10 11 16 18
|
cbvrabw |
|- { x e. D | -oo < ( F ` x ) } = { y e. D | -oo < ( F ` y ) } |
| 20 |
|
nfv |
|- F/ y ph |
| 21 |
2 3 4
|
smff |
|- ( ph -> F : D --> RR ) |
| 22 |
21
|
ffvelcdmda |
|- ( ( ph /\ y e. D ) -> ( F ` y ) e. RR ) |
| 23 |
20 22
|
pimgtmnf |
|- ( ph -> { y e. D | -oo < ( F ` y ) } = D ) |
| 24 |
19 23
|
eqtrid |
|- ( ph -> { x e. D | -oo < ( F ` x ) } = D ) |
| 25 |
7 24
|
sylan9eqr |
|- ( ( ph /\ A = -oo ) -> { x e. D | A < ( F ` x ) } = D ) |
| 26 |
2 3 4
|
smfdmss |
|- ( ph -> D C_ U. S ) |
| 27 |
2 26
|
subsaluni |
|- ( ph -> D e. ( S |`t D ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ A = -oo ) -> D e. ( S |`t D ) ) |
| 29 |
25 28
|
eqeltrd |
|- ( ( ph /\ A = -oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
| 30 |
|
breq1 |
|- ( A = +oo -> ( A < ( F ` x ) <-> +oo < ( F ` x ) ) ) |
| 31 |
30
|
rabbidv |
|- ( A = +oo -> { x e. D | A < ( F ` x ) } = { x e. D | +oo < ( F ` x ) } ) |
| 32 |
1 9 21
|
pimgtpnf2f |
|- ( ph -> { x e. D | +oo < ( F ` x ) } = (/) ) |
| 33 |
31 32
|
sylan9eqr |
|- ( ( ph /\ A = +oo ) -> { x e. D | A < ( F ` x ) } = (/) ) |
| 34 |
3
|
dmexd |
|- ( ph -> dom F e. _V ) |
| 35 |
4 34
|
eqeltrid |
|- ( ph -> D e. _V ) |
| 36 |
|
eqid |
|- ( S |`t D ) = ( S |`t D ) |
| 37 |
2 35 36
|
subsalsal |
|- ( ph -> ( S |`t D ) e. SAlg ) |
| 38 |
37
|
0sald |
|- ( ph -> (/) e. ( S |`t D ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ A = +oo ) -> (/) e. ( S |`t D ) ) |
| 40 |
33 39
|
eqeltrd |
|- ( ( ph /\ A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
| 41 |
40
|
adantlr |
|- ( ( ( ph /\ A =/= -oo ) /\ A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
| 42 |
|
simpll |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> ph ) |
| 43 |
42 5
|
syl |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A e. RR* ) |
| 44 |
|
simplr |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A =/= -oo ) |
| 45 |
|
neqne |
|- ( -. A = +oo -> A =/= +oo ) |
| 46 |
45
|
adantl |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A =/= +oo ) |
| 47 |
43 44 46
|
xrred |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> A e. RR ) |
| 48 |
2
|
adantr |
|- ( ( ph /\ A e. RR ) -> S e. SAlg ) |
| 49 |
3
|
adantr |
|- ( ( ph /\ A e. RR ) -> F e. ( SMblFn ` S ) ) |
| 50 |
|
simpr |
|- ( ( ph /\ A e. RR ) -> A e. RR ) |
| 51 |
1 48 49 4 50
|
smfpreimagtf |
|- ( ( ph /\ A e. RR ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
| 52 |
42 47 51
|
syl2anc |
|- ( ( ( ph /\ A =/= -oo ) /\ -. A = +oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
| 53 |
41 52
|
pm2.61dan |
|- ( ( ph /\ A =/= -oo ) -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |
| 54 |
29 53
|
pm2.61dane |
|- ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |