Metamath Proof Explorer


Theorem smfpimgtxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses smfpimgtxr.x 𝑥 𝐹
smfpimgtxr.s ( 𝜑𝑆 ∈ SAlg )
smfpimgtxr.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimgtxr.d 𝐷 = dom 𝐹
smfpimgtxr.a ( 𝜑𝐴 ∈ ℝ* )
Assertion smfpimgtxr ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimgtxr.x 𝑥 𝐹
2 smfpimgtxr.s ( 𝜑𝑆 ∈ SAlg )
3 smfpimgtxr.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
4 smfpimgtxr.d 𝐷 = dom 𝐹
5 smfpimgtxr.a ( 𝜑𝐴 ∈ ℝ* )
6 breq1 ( 𝐴 = -∞ → ( 𝐴 < ( 𝐹𝑥 ) ↔ -∞ < ( 𝐹𝑥 ) ) )
7 6 rabbidv ( 𝐴 = -∞ → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } = { 𝑥𝐷 ∣ -∞ < ( 𝐹𝑥 ) } )
8 1 nfdm 𝑥 dom 𝐹
9 4 8 nfcxfr 𝑥 𝐷
10 nfcv 𝑦 𝐷
11 nfv 𝑦 -∞ < ( 𝐹𝑥 )
12 nfcv 𝑥 -∞
13 nfcv 𝑥 <
14 nfcv 𝑥 𝑦
15 1 14 nffv 𝑥 ( 𝐹𝑦 )
16 12 13 15 nfbr 𝑥 -∞ < ( 𝐹𝑦 )
17 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
18 17 breq2d ( 𝑥 = 𝑦 → ( -∞ < ( 𝐹𝑥 ) ↔ -∞ < ( 𝐹𝑦 ) ) )
19 9 10 11 16 18 cbvrabw { 𝑥𝐷 ∣ -∞ < ( 𝐹𝑥 ) } = { 𝑦𝐷 ∣ -∞ < ( 𝐹𝑦 ) }
20 nfv 𝑦 𝜑
21 2 3 4 smff ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
22 21 ffvelcdmda ( ( 𝜑𝑦𝐷 ) → ( 𝐹𝑦 ) ∈ ℝ )
23 20 22 pimgtmnf ( 𝜑 → { 𝑦𝐷 ∣ -∞ < ( 𝐹𝑦 ) } = 𝐷 )
24 19 23 eqtrid ( 𝜑 → { 𝑥𝐷 ∣ -∞ < ( 𝐹𝑥 ) } = 𝐷 )
25 7 24 sylan9eqr ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } = 𝐷 )
26 2 3 4 smfdmss ( 𝜑𝐷 𝑆 )
27 2 26 subsaluni ( 𝜑𝐷 ∈ ( 𝑆t 𝐷 ) )
28 27 adantr ( ( 𝜑𝐴 = -∞ ) → 𝐷 ∈ ( 𝑆t 𝐷 ) )
29 25 28 eqeltrd ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
30 breq1 ( 𝐴 = +∞ → ( 𝐴 < ( 𝐹𝑥 ) ↔ +∞ < ( 𝐹𝑥 ) ) )
31 30 rabbidv ( 𝐴 = +∞ → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } = { 𝑥𝐷 ∣ +∞ < ( 𝐹𝑥 ) } )
32 1 9 21 pimgtpnf2f ( 𝜑 → { 𝑥𝐷 ∣ +∞ < ( 𝐹𝑥 ) } = ∅ )
33 31 32 sylan9eqr ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } = ∅ )
34 3 dmexd ( 𝜑 → dom 𝐹 ∈ V )
35 4 34 eqeltrid ( 𝜑𝐷 ∈ V )
36 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
37 2 35 36 subsalsal ( 𝜑 → ( 𝑆t 𝐷 ) ∈ SAlg )
38 37 0sald ( 𝜑 → ∅ ∈ ( 𝑆t 𝐷 ) )
39 38 adantr ( ( 𝜑𝐴 = +∞ ) → ∅ ∈ ( 𝑆t 𝐷 ) )
40 33 39 eqeltrd ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
41 40 adantlr ( ( ( 𝜑𝐴 ≠ -∞ ) ∧ 𝐴 = +∞ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
42 simpll ( ( ( 𝜑𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝜑 )
43 42 5 syl ( ( ( 𝜑𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ∈ ℝ* )
44 simplr ( ( ( 𝜑𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ -∞ )
45 neqne ( ¬ 𝐴 = +∞ → 𝐴 ≠ +∞ )
46 45 adantl ( ( ( 𝜑𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ +∞ )
47 43 44 46 xrred ( ( ( 𝜑𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ∈ ℝ )
48 2 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝑆 ∈ SAlg )
49 3 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
50 simpr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ )
51 1 48 49 4 50 smfpreimagtf ( ( 𝜑𝐴 ∈ ℝ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
52 42 47 51 syl2anc ( ( ( 𝜑𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
53 41 52 pm2.61dan ( ( 𝜑𝐴 ≠ -∞ ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
54 29 53 pm2.61dane ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )