Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimgtxr.x |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
smfpimgtxr.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfpimgtxr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
4 |
|
smfpimgtxr.d |
⊢ 𝐷 = dom 𝐹 |
5 |
|
smfpimgtxr.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
6 |
|
breq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 < ( 𝐹 ‘ 𝑥 ) ↔ -∞ < ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝐴 = -∞ → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } ) |
9 |
1
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
10 |
4 9
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
11 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
12 |
|
nfv |
⊢ Ⅎ 𝑦 -∞ < ( 𝐹 ‘ 𝑥 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑥 -∞ |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
15 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
16 |
1 15
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
17 |
13 14 16
|
nfbr |
⊢ Ⅎ 𝑥 -∞ < ( 𝐹 ‘ 𝑦 ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
19 |
18
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( -∞ < ( 𝐹 ‘ 𝑥 ) ↔ -∞ < ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
10 11 12 17 19
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑦 ) } |
21 |
20
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑦 ) } ) |
22 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
23 |
2 3 4
|
smff |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐹 : 𝐷 ⟶ ℝ ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) |
26 |
24 25
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
27 |
22 26
|
pimgtmnf |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑦 ) } = 𝐷 ) |
28 |
|
eqidd |
⊢ ( 𝜑 → 𝐷 = 𝐷 ) |
29 |
21 27 28
|
3eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } = 𝐷 ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } = 𝐷 ) |
31 |
8 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = 𝐷 ) |
32 |
2 3 4
|
smfdmss |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
33 |
2 32
|
restuni4 |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) = 𝐷 ) |
34 |
33
|
eqcomd |
⊢ ( 𝜑 → 𝐷 = ∪ ( 𝑆 ↾t 𝐷 ) ) |
35 |
3
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
36 |
4 35
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
37 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
38 |
2 36 37
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
39 |
38
|
salunid |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
40 |
34 39
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
42 |
31 41
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
43 |
|
neqne |
⊢ ( ¬ 𝐴 = -∞ → 𝐴 ≠ -∞ ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ -∞ ) |
45 |
|
breq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 < ( 𝐹 ‘ 𝑥 ) ↔ +∞ < ( 𝐹 ‘ 𝑥 ) ) ) |
46 |
45
|
rabbidv |
⊢ ( 𝐴 = +∞ → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐷 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐷 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } ) |
48 |
1 23
|
pimgtpnf2 |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } = ∅ ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } = ∅ ) |
50 |
47 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = ∅ ) |
51 |
38
|
0sald |
⊢ ( 𝜑 → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
53 |
50 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
54 |
53
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
55 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝜑 ) |
56 |
55 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ∈ ℝ* ) |
57 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ -∞ ) |
58 |
|
neqne |
⊢ ( ¬ 𝐴 = +∞ → 𝐴 ≠ +∞ ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ +∞ ) |
60 |
56 57 59
|
xrred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ∈ ℝ ) |
61 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
62 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
63 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
64 |
1 61 62 4 63
|
smfpreimagtf |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
65 |
55 60 64
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
66 |
54 65
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
67 |
44 66
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
68 |
42 67
|
pm2.61dan |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |