| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimgtxr.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | smfpimgtxr.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfpimgtxr.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 4 |  | smfpimgtxr.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 5 |  | smfpimgtxr.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝐴  =  -∞  →  ( 𝐴  <  ( 𝐹 ‘ 𝑥 )  ↔  -∞  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( 𝐴  =  -∞  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐷  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 8 | 1 | nfdm | ⊢ Ⅎ 𝑥 dom  𝐹 | 
						
							| 9 | 4 8 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑦 𝐷 | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑦 -∞  <  ( 𝐹 ‘ 𝑥 ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥 -∞ | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 15 | 1 14 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 16 | 12 13 15 | nfbr | ⊢ Ⅎ 𝑥 -∞  <  ( 𝐹 ‘ 𝑦 ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( -∞  <  ( 𝐹 ‘ 𝑥 )  ↔  -∞  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 19 | 9 10 11 16 18 | cbvrabw | ⊢ { 𝑥  ∈  𝐷  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑦  ∈  𝐷  ∣  -∞  <  ( 𝐹 ‘ 𝑦 ) } | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 21 | 2 3 4 | smff | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 23 | 20 22 | pimgtmnf | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐷  ∣  -∞  <  ( 𝐹 ‘ 𝑦 ) }  =  𝐷 ) | 
						
							| 24 | 19 23 | eqtrid | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) }  =  𝐷 ) | 
						
							| 25 | 7 24 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐴  =  -∞ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  =  𝐷 ) | 
						
							| 26 | 2 3 4 | smfdmss | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 27 | 2 26 | subsaluni | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  -∞ )  →  𝐷  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 29 | 25 28 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  =  -∞ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 30 |  | breq1 | ⊢ ( 𝐴  =  +∞  →  ( 𝐴  <  ( 𝐹 ‘ 𝑥 )  ↔  +∞  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 31 | 30 | rabbidv | ⊢ ( 𝐴  =  +∞  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐷  ∣  +∞  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 32 | 1 9 21 | pimgtpnf2f | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  +∞  <  ( 𝐹 ‘ 𝑥 ) }  =  ∅ ) | 
						
							| 33 | 31 32 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐴  =  +∞ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  =  ∅ ) | 
						
							| 34 | 3 | dmexd | ⊢ ( 𝜑  →  dom  𝐹  ∈  V ) | 
						
							| 35 | 4 34 | eqeltrid | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  𝐷 ) | 
						
							| 37 | 2 35 36 | subsalsal | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 38 | 37 | 0sald | ⊢ ( 𝜑  →  ∅  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  +∞ )  →  ∅  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 40 | 33 39 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  =  +∞ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 41 | 40 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  -∞ )  ∧  𝐴  =  +∞ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 42 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  -∞ )  ∧  ¬  𝐴  =  +∞ )  →  𝜑 ) | 
						
							| 43 | 42 5 | syl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  -∞ )  ∧  ¬  𝐴  =  +∞ )  →  𝐴  ∈  ℝ* ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  -∞ )  ∧  ¬  𝐴  =  +∞ )  →  𝐴  ≠  -∞ ) | 
						
							| 45 |  | neqne | ⊢ ( ¬  𝐴  =  +∞  →  𝐴  ≠  +∞ ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  -∞ )  ∧  ¬  𝐴  =  +∞ )  →  𝐴  ≠  +∞ ) | 
						
							| 47 | 43 44 46 | xrred | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  -∞ )  ∧  ¬  𝐴  =  +∞ )  →  𝐴  ∈  ℝ ) | 
						
							| 48 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 49 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 51 | 1 48 49 4 50 | smfpreimagtf | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 52 | 42 47 51 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  -∞ )  ∧  ¬  𝐴  =  +∞ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 53 | 41 52 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐴  ≠  -∞ )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 54 | 29 53 | pm2.61dane | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) |