| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimgtxr.x |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
smfpimgtxr.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smfpimgtxr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 4 |
|
smfpimgtxr.d |
⊢ 𝐷 = dom 𝐹 |
| 5 |
|
smfpimgtxr.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 |
|
breq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 < ( 𝐹 ‘ 𝑥 ) ↔ -∞ < ( 𝐹 ‘ 𝑥 ) ) ) |
| 7 |
6
|
rabbidv |
⊢ ( 𝐴 = -∞ → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } ) |
| 8 |
1
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
| 9 |
4 8
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
| 11 |
|
nfv |
⊢ Ⅎ 𝑦 -∞ < ( 𝐹 ‘ 𝑥 ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 -∞ |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 15 |
1 14
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 16 |
12 13 15
|
nfbr |
⊢ Ⅎ 𝑥 -∞ < ( 𝐹 ‘ 𝑦 ) |
| 17 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 18 |
17
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( -∞ < ( 𝐹 ‘ 𝑥 ) ↔ -∞ < ( 𝐹 ‘ 𝑦 ) ) ) |
| 19 |
9 10 11 16 18
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑦 ) } |
| 20 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 21 |
2 3 4
|
smff |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
| 22 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 23 |
20 22
|
pimgtmnf |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑦 ) } = 𝐷 ) |
| 24 |
19 23
|
eqtrid |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } = 𝐷 ) |
| 25 |
7 24
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = 𝐷 ) |
| 26 |
2 3 4
|
smfdmss |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
| 27 |
2 26
|
subsaluni |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 29 |
25 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 30 |
|
breq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 < ( 𝐹 ‘ 𝑥 ) ↔ +∞ < ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 |
30
|
rabbidv |
⊢ ( 𝐴 = +∞ → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐷 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } ) |
| 32 |
1 9 21
|
pimgtpnf2f |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ +∞ < ( 𝐹 ‘ 𝑥 ) } = ∅ ) |
| 33 |
31 32
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = ∅ ) |
| 34 |
3
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
| 35 |
4 34
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 36 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
| 37 |
2 35 36
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
| 38 |
37
|
0sald |
⊢ ( 𝜑 → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 40 |
33 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 41 |
40
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 42 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝜑 ) |
| 43 |
42 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ∈ ℝ* ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ -∞ ) |
| 45 |
|
neqne |
⊢ ( ¬ 𝐴 = +∞ → 𝐴 ≠ +∞ ) |
| 46 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ +∞ ) |
| 47 |
43 44 46
|
xrred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → 𝐴 ∈ ℝ ) |
| 48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
| 49 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 51 |
1 48 49 4 50
|
smfpreimagtf |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 52 |
42 47 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) ∧ ¬ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 53 |
41 52
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ -∞ ) → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 54 |
29 53
|
pm2.61dane |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |