Metamath Proof Explorer


Theorem smfpreimagtf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimagtf.x 𝑥 𝐹
smfpreimagtf.s ( 𝜑𝑆 ∈ SAlg )
smfpreimagtf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpreimagtf.d 𝐷 = dom 𝐹
smfpreimagtf.a ( 𝜑𝐴 ∈ ℝ )
Assertion smfpreimagtf ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpreimagtf.x 𝑥 𝐹
2 smfpreimagtf.s ( 𝜑𝑆 ∈ SAlg )
3 smfpreimagtf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
4 smfpreimagtf.d 𝐷 = dom 𝐹
5 smfpreimagtf.a ( 𝜑𝐴 ∈ ℝ )
6 1 nfdm 𝑥 dom 𝐹
7 4 6 nfcxfr 𝑥 𝐷
8 nfcv 𝑦 𝐷
9 nfv 𝑦 𝐴 < ( 𝐹𝑥 )
10 nfcv 𝑥 𝐴
11 nfcv 𝑥 <
12 nfcv 𝑥 𝑦
13 1 12 nffv 𝑥 ( 𝐹𝑦 )
14 10 11 13 nfbr 𝑥 𝐴 < ( 𝐹𝑦 )
15 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
16 15 breq2d ( 𝑥 = 𝑦 → ( 𝐴 < ( 𝐹𝑥 ) ↔ 𝐴 < ( 𝐹𝑦 ) ) )
17 7 8 9 14 16 cbvrabw { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } = { 𝑦𝐷𝐴 < ( 𝐹𝑦 ) }
18 17 a1i ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } = { 𝑦𝐷𝐴 < ( 𝐹𝑦 ) } )
19 2 3 4 5 smfpreimagt ( 𝜑 → { 𝑦𝐷𝐴 < ( 𝐹𝑦 ) } ∈ ( 𝑆t 𝐷 ) )
20 18 19 eqeltrd ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )