| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpreimagtf.x |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
smfpreimagtf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smfpreimagtf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 4 |
|
smfpreimagtf.d |
⊢ 𝐷 = dom 𝐹 |
| 5 |
|
smfpreimagtf.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
1
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
| 7 |
4 6
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
| 9 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 < ( 𝐹 ‘ 𝑥 ) |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 13 |
1 12
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 14 |
10 11 13
|
nfbr |
⊢ Ⅎ 𝑥 𝐴 < ( 𝐹 ‘ 𝑦 ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 16 |
15
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 < ( 𝐹 ‘ 𝑥 ) ↔ 𝐴 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 |
7 8 9 14 16
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑦 ) } |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑦 ) } ) |
| 19 |
2 3 4 5
|
smfpreimagt |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 20 |
18 19
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ 𝐴 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |