| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpreimagtf.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | smfpreimagtf.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfpreimagtf.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 4 |  | smfpreimagtf.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 5 |  | smfpreimagtf.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 6 | 1 | nfdm | ⊢ Ⅎ 𝑥 dom  𝐹 | 
						
							| 7 | 4 6 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑦 𝐷 | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑦 𝐴  <  ( 𝐹 ‘ 𝑥 ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 13 | 1 12 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 14 | 10 11 13 | nfbr | ⊢ Ⅎ 𝑥 𝐴  <  ( 𝐹 ‘ 𝑦 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 16 | 15 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  <  ( 𝐹 ‘ 𝑥 )  ↔  𝐴  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 17 | 7 8 9 14 16 | cbvrabw | ⊢ { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑦  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑦 ) } | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑦  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑦 ) } ) | 
						
							| 19 | 2 3 4 5 | smfpreimagt | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 20 | 18 19 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) |