Metamath Proof Explorer


Theorem smfpreimagtf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimagtf.x _xF
smfpreimagtf.s φSSAlg
smfpreimagtf.f φFSMblFnS
smfpreimagtf.d D=domF
smfpreimagtf.a φA
Assertion smfpreimagtf φxD|A<FxS𝑡D

Proof

Step Hyp Ref Expression
1 smfpreimagtf.x _xF
2 smfpreimagtf.s φSSAlg
3 smfpreimagtf.f φFSMblFnS
4 smfpreimagtf.d D=domF
5 smfpreimagtf.a φA
6 1 nfdm _xdomF
7 4 6 nfcxfr _xD
8 nfcv _yD
9 nfv yA<Fx
10 nfcv _xA
11 nfcv _x<
12 nfcv _xy
13 1 12 nffv _xFy
14 10 11 13 nfbr xA<Fy
15 fveq2 x=yFx=Fy
16 15 breq2d x=yA<FxA<Fy
17 7 8 9 14 16 cbvrabw xD|A<Fx=yD|A<Fy
18 17 a1i φxD|A<Fx=yD|A<Fy
19 2 3 4 5 smfpreimagt φyD|A<FyS𝑡D
20 18 19 eqeltrd φxD|A<FxS𝑡D