| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpreimagtf.x |
|- F/_ x F |
| 2 |
|
smfpreimagtf.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfpreimagtf.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 4 |
|
smfpreimagtf.d |
|- D = dom F |
| 5 |
|
smfpreimagtf.a |
|- ( ph -> A e. RR ) |
| 6 |
1
|
nfdm |
|- F/_ x dom F |
| 7 |
4 6
|
nfcxfr |
|- F/_ x D |
| 8 |
|
nfcv |
|- F/_ y D |
| 9 |
|
nfv |
|- F/ y A < ( F ` x ) |
| 10 |
|
nfcv |
|- F/_ x A |
| 11 |
|
nfcv |
|- F/_ x < |
| 12 |
|
nfcv |
|- F/_ x y |
| 13 |
1 12
|
nffv |
|- F/_ x ( F ` y ) |
| 14 |
10 11 13
|
nfbr |
|- F/ x A < ( F ` y ) |
| 15 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 16 |
15
|
breq2d |
|- ( x = y -> ( A < ( F ` x ) <-> A < ( F ` y ) ) ) |
| 17 |
7 8 9 14 16
|
cbvrabw |
|- { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) } |
| 18 |
17
|
a1i |
|- ( ph -> { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) } ) |
| 19 |
2 3 4 5
|
smfpreimagt |
|- ( ph -> { y e. D | A < ( F ` y ) } e. ( S |`t D ) ) |
| 20 |
18 19
|
eqeltrd |
|- ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |