| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpreimagtf.x |  |-  F/_ x F | 
						
							| 2 |  | smfpreimagtf.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfpreimagtf.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 4 |  | smfpreimagtf.d |  |-  D = dom F | 
						
							| 5 |  | smfpreimagtf.a |  |-  ( ph -> A e. RR ) | 
						
							| 6 | 1 | nfdm |  |-  F/_ x dom F | 
						
							| 7 | 4 6 | nfcxfr |  |-  F/_ x D | 
						
							| 8 |  | nfcv |  |-  F/_ y D | 
						
							| 9 |  | nfv |  |-  F/ y A < ( F ` x ) | 
						
							| 10 |  | nfcv |  |-  F/_ x A | 
						
							| 11 |  | nfcv |  |-  F/_ x < | 
						
							| 12 |  | nfcv |  |-  F/_ x y | 
						
							| 13 | 1 12 | nffv |  |-  F/_ x ( F ` y ) | 
						
							| 14 | 10 11 13 | nfbr |  |-  F/ x A < ( F ` y ) | 
						
							| 15 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 16 | 15 | breq2d |  |-  ( x = y -> ( A < ( F ` x ) <-> A < ( F ` y ) ) ) | 
						
							| 17 | 7 8 9 14 16 | cbvrabw |  |-  { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) } | 
						
							| 18 | 17 | a1i |  |-  ( ph -> { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) } ) | 
						
							| 19 | 2 3 4 5 | smfpreimagt |  |-  ( ph -> { y e. D | A < ( F ` y ) } e. ( S |`t D ) ) | 
						
							| 20 | 18 19 | eqeltrd |  |-  ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |