Metamath Proof Explorer


Theorem smfpreimagtf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimagtf.x
|- F/_ x F
smfpreimagtf.s
|- ( ph -> S e. SAlg )
smfpreimagtf.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfpreimagtf.d
|- D = dom F
smfpreimagtf.a
|- ( ph -> A e. RR )
Assertion smfpreimagtf
|- ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )

Proof

Step Hyp Ref Expression
1 smfpreimagtf.x
 |-  F/_ x F
2 smfpreimagtf.s
 |-  ( ph -> S e. SAlg )
3 smfpreimagtf.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
4 smfpreimagtf.d
 |-  D = dom F
5 smfpreimagtf.a
 |-  ( ph -> A e. RR )
6 1 nfdm
 |-  F/_ x dom F
7 4 6 nfcxfr
 |-  F/_ x D
8 nfcv
 |-  F/_ y D
9 nfv
 |-  F/ y A < ( F ` x )
10 nfcv
 |-  F/_ x A
11 nfcv
 |-  F/_ x <
12 nfcv
 |-  F/_ x y
13 1 12 nffv
 |-  F/_ x ( F ` y )
14 10 11 13 nfbr
 |-  F/ x A < ( F ` y )
15 fveq2
 |-  ( x = y -> ( F ` x ) = ( F ` y ) )
16 15 breq2d
 |-  ( x = y -> ( A < ( F ` x ) <-> A < ( F ` y ) ) )
17 7 8 9 14 16 cbvrabw
 |-  { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) }
18 17 a1i
 |-  ( ph -> { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) } )
19 2 3 4 5 smfpreimagt
 |-  ( ph -> { y e. D | A < ( F ` y ) } e. ( S |`t D ) )
20 18 19 eqeltrd
 |-  ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) )