Step |
Hyp |
Ref |
Expression |
1 |
|
smfpreimagtf.x |
|- F/_ x F |
2 |
|
smfpreimagtf.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfpreimagtf.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
4 |
|
smfpreimagtf.d |
|- D = dom F |
5 |
|
smfpreimagtf.a |
|- ( ph -> A e. RR ) |
6 |
1
|
nfdm |
|- F/_ x dom F |
7 |
4 6
|
nfcxfr |
|- F/_ x D |
8 |
|
nfcv |
|- F/_ y D |
9 |
|
nfv |
|- F/ y A < ( F ` x ) |
10 |
|
nfcv |
|- F/_ x A |
11 |
|
nfcv |
|- F/_ x < |
12 |
|
nfcv |
|- F/_ x y |
13 |
1 12
|
nffv |
|- F/_ x ( F ` y ) |
14 |
10 11 13
|
nfbr |
|- F/ x A < ( F ` y ) |
15 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
16 |
15
|
breq2d |
|- ( x = y -> ( A < ( F ` x ) <-> A < ( F ` y ) ) ) |
17 |
7 8 9 14 16
|
cbvrabw |
|- { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) } |
18 |
17
|
a1i |
|- ( ph -> { x e. D | A < ( F ` x ) } = { y e. D | A < ( F ` y ) } ) |
19 |
2 3 4 5
|
smfpreimagt |
|- ( ph -> { y e. D | A < ( F ` y ) } e. ( S |`t D ) ) |
20 |
18 19
|
eqeltrd |
|- ( ph -> { x e. D | A < ( F ` x ) } e. ( S |`t D ) ) |