Metamath Proof Explorer


Theorem smfpreimagt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimagt.s ( 𝜑𝑆 ∈ SAlg )
smfpreimagt.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpreimagt.d 𝐷 = dom 𝐹
smfpreimagt.a ( 𝜑𝐴 ∈ ℝ )
Assertion smfpreimagt ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpreimagt.s ( 𝜑𝑆 ∈ SAlg )
2 smfpreimagt.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3 smfpreimagt.d 𝐷 = dom 𝐹
4 smfpreimagt.a ( 𝜑𝐴 ∈ ℝ )
5 1 3 issmfgt ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) ) ) )
6 2 5 mpbid ( 𝜑 → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) ) )
7 6 simp3d ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
8 breq1 ( 𝑎 = 𝐴 → ( 𝑎 < ( 𝐹𝑥 ) ↔ 𝐴 < ( 𝐹𝑥 ) ) )
9 8 rabbidv ( 𝑎 = 𝐴 → { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } = { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } )
10 9 eleq1d ( 𝑎 = 𝐴 → ( { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) ) )
11 10 rspcva ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) ) → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
12 4 7 11 syl2anc ( 𝜑 → { 𝑥𝐷𝐴 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )