| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpreimagt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | smfpreimagt.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 3 |  | smfpreimagt.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 4 |  | smfpreimagt.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 | 1 3 | issmfgt | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 6 | 2 5 | mpbid | ⊢ ( 𝜑  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 7 | 6 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 8 |  | breq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  <  ( 𝐹 ‘ 𝑥 )  ↔  𝐴  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 9 | 8 | rabbidv | ⊢ ( 𝑎  =  𝐴  →  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑎  =  𝐴  →  ( { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 11 | 10 | rspcva | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) )  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 12 | 4 7 11 | syl2anc | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  𝐴  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) |