| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmfgt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | issmfgt.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 3 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 | 3 4 2 | smfdmss | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 6 | 3 4 2 | smff | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑏 𝜑 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑏 𝐹  ∈  ( SMblFn ‘ 𝑆 ) | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑏 ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 10 | 3 5 | restuni4 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ∪  ( 𝑆  ↾t  𝐷 )  =  𝐷 ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐷  =  ∪  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 12 | 11 | rabeqdv | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) } ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) } ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑦 𝐹  ∈  ( SMblFn ‘ 𝑆 ) | 
						
							| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑦 𝑏  ∈  ℝ | 
						
							| 18 | 16 17 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ ) | 
						
							| 19 |  | nfv | ⊢ Ⅎ 𝑐 ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ ) | 
						
							| 20 | 1 | uniexd | ⊢ ( 𝜑  →  ∪  𝑆  ∈  V ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  ∪  𝑆  ∈  V ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 23 | 21 22 | ssexd | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  𝐷  ∈  V ) | 
						
							| 24 | 5 23 | syldan | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐷  ∈  V ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  𝐷 ) | 
						
							| 26 | 3 24 25 | subsalsal | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 28 |  | eqid | ⊢ ∪  ( 𝑆  ↾t  𝐷 )  =  ∪  ( 𝑆  ↾t  𝐷 ) | 
						
							| 29 | 6 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 31 | 10 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ∪  ( 𝑆  ↾t  𝐷 )  =  𝐷 ) | 
						
							| 32 | 30 31 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  𝑦  ∈  𝐷 ) | 
						
							| 33 | 29 32 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 34 | 33 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 35 | 34 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  ∧  𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 36 | 3 2 | issmfle | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑐  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 37 | 4 36 | mpbid | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑐  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 38 | 37 | simp3d | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ∀ 𝑐  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 39 | 10 | rabeqdv | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  =  { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 } ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 41 | 40 | ralbidv | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( ∀ 𝑐  ∈  ℝ { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∀ 𝑐  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 42 | 38 41 | mpbird | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ∀ 𝑐  ∈  ℝ { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑐  ∈  ℝ )  →  ∀ 𝑐  ∈  ℝ { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑐  ∈  ℝ )  →  𝑐  ∈  ℝ ) | 
						
							| 45 |  | rspa | ⊢ ( ( ∀ 𝑐  ∈  ℝ { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 )  ∧  𝑐  ∈  ℝ )  →  { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 46 | 43 44 45 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑐  ∈  ℝ )  →  { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 47 | 46 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  ∧  𝑐  ∈  ℝ )  →  { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑦 )  ≤  𝑐 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  𝑏  ∈  ℝ ) | 
						
							| 49 | 18 19 27 28 35 47 48 | salpreimalegt | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  { 𝑦  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 50 | 13 49 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 51 | 50 | ex | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝑏  ∈  ℝ  →  { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 52 | 9 51 | ralrimi | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 53 | 5 6 52 | 3jca | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑦 𝐷  ⊆  ∪  𝑆 | 
						
							| 56 |  | nfv | ⊢ Ⅎ 𝑦 𝐹 : 𝐷 ⟶ ℝ | 
						
							| 57 |  | nfcv | ⊢ Ⅎ 𝑦 ℝ | 
						
							| 58 |  | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) } | 
						
							| 59 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝑆  ↾t  𝐷 ) | 
						
							| 60 | 58 59 | nfel | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) | 
						
							| 61 | 57 60 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) | 
						
							| 62 | 55 56 61 | nf3an | ⊢ Ⅎ 𝑦 ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 63 | 14 62 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 64 |  | nfv | ⊢ Ⅎ 𝑏 𝐷  ⊆  ∪  𝑆 | 
						
							| 65 |  | nfv | ⊢ Ⅎ 𝑏 𝐹 : 𝐷 ⟶ ℝ | 
						
							| 66 |  | nfra1 | ⊢ Ⅎ 𝑏 ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) | 
						
							| 67 | 64 65 66 | nf3an | ⊢ Ⅎ 𝑏 ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 68 | 7 67 | nfan | ⊢ Ⅎ 𝑏 ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 69 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝑆  ∈  SAlg ) | 
						
							| 70 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 71 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 72 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 73 | 63 68 69 2 70 71 72 | issmfgtlem | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 74 | 73 | ex | ⊢ ( 𝜑  →  ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) ) | 
						
							| 75 | 54 74 | impbid | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 76 |  | breq1 | ⊢ ( 𝑏  =  𝑎  →  ( 𝑏  <  ( 𝐹 ‘ 𝑦 )  ↔  𝑎  <  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 77 | 76 | rabbidv | ⊢ ( 𝑏  =  𝑎  →  { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑦  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑦 ) } ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 79 | 78 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑎  <  ( 𝐹 ‘ 𝑦 )  ↔  𝑎  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 80 | 79 | cbvrabv | ⊢ { 𝑦  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 81 | 80 | a1i | ⊢ ( 𝑏  =  𝑎  →  { 𝑦  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 82 | 77 81 | eqtrd | ⊢ ( 𝑏  =  𝑎  →  { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 83 | 82 | eleq1d | ⊢ ( 𝑏  =  𝑎  →  ( { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 84 | 83 | cbvralvw | ⊢ ( ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 85 | 84 | 3anbi3i | ⊢ ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 86 | 85 | a1i | ⊢ ( 𝜑  →  ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 87 | 75 86 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) |