| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salpreimalegt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | salpreimalegt.a | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 3 |  | salpreimalegt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | salpreimalegt.u | ⊢ 𝐴  =  ∪  𝑆 | 
						
							| 5 |  | salpreimalegt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 6 |  | salpreimalegt.p | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝑎 }  ∈  𝑆 ) | 
						
							| 7 |  | salpreimalegt.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 8 | 4 | eqcomi | ⊢ ∪  𝑆  =  𝐴 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ∪  𝑆  =  𝐴 ) | 
						
							| 10 | 9 | difeq1d | ⊢ ( 𝜑  →  ( ∪  𝑆  ∖  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } )  =  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } ) ) | 
						
							| 11 | 7 | rexrd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 12 | 1 5 11 | preimalegt | ⊢ ( 𝜑  →  ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } )  =  { 𝑥  ∈  𝐴  ∣  𝐶  <  𝐵 } ) | 
						
							| 13 | 10 12 | eqtr2d | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐶  <  𝐵 }  =  ( ∪  𝑆  ∖  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } ) ) | 
						
							| 14 | 7 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐶  ∈  ℝ ) ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑎 𝐶  ∈  ℝ | 
						
							| 16 | 2 15 | nfan | ⊢ Ⅎ 𝑎 ( 𝜑  ∧  𝐶  ∈  ℝ ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑎 { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ∈  𝑆 | 
						
							| 18 | 16 17 | nfim | ⊢ Ⅎ 𝑎 ( ( 𝜑  ∧  𝐶  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ∈  𝑆 ) | 
						
							| 19 |  | eleq1 | ⊢ ( 𝑎  =  𝐶  →  ( 𝑎  ∈  ℝ  ↔  𝐶  ∈  ℝ ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑎  =  𝐶  →  ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ↔  ( 𝜑  ∧  𝐶  ∈  ℝ ) ) ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑎  =  𝐶  →  ( 𝐵  ≤  𝑎  ↔  𝐵  ≤  𝐶 ) ) | 
						
							| 22 | 21 | rabbidv | ⊢ ( 𝑎  =  𝐶  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝑎 }  =  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑎  =  𝐶  →  ( { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝑎 }  ∈  𝑆  ↔  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ∈  𝑆 ) ) | 
						
							| 24 | 20 23 | imbi12d | ⊢ ( 𝑎  =  𝐶  →  ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝑎 }  ∈  𝑆 )  ↔  ( ( 𝜑  ∧  𝐶  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ∈  𝑆 ) ) ) | 
						
							| 25 | 18 24 6 | vtoclg1f | ⊢ ( 𝐶  ∈  ℝ  →  ( ( 𝜑  ∧  𝐶  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ∈  𝑆 ) ) | 
						
							| 26 | 7 14 25 | sylc | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 }  ∈  𝑆 ) | 
						
							| 27 | 3 26 | saldifcld | ⊢ ( 𝜑  →  ( ∪  𝑆  ∖  { 𝑥  ∈  𝐴  ∣  𝐵  ≤  𝐶 } )  ∈  𝑆 ) | 
						
							| 28 | 13 27 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐶  <  𝐵 }  ∈  𝑆 ) |