| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimalegt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
preimalegt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 3 |
|
preimalegt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 5 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } |
| 6 |
4 5
|
nfdif |
⊢ Ⅎ 𝑥 ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) |
| 7 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } |
| 8 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) → 𝑥 ∈ 𝐴 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) → 𝑥 ∈ 𝐴 ) |
| 10 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) → ¬ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) |
| 11 |
8
|
anim1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝐶 ) ) |
| 12 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝐶 ) ) |
| 13 |
11 12
|
sylibr |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ∧ 𝐵 ≤ 𝐶 ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) |
| 14 |
10 13
|
mtand |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) → ¬ 𝐵 ≤ 𝐶 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) → ¬ 𝐵 ≤ 𝐶 ) |
| 16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) → 𝐶 ∈ ℝ* ) |
| 17 |
8 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) → 𝐵 ∈ ℝ* ) |
| 18 |
16 17
|
xrltnled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
| 19 |
15 18
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) → 𝐶 < 𝐵 ) |
| 20 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐶 < 𝐵 ) ) |
| 21 |
9 19 20
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) |
| 22 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } → 𝑥 ∈ 𝐴 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → 𝑥 ∈ 𝐴 ) |
| 24 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } → 𝐶 < 𝐵 ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → 𝐶 < 𝐵 ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → 𝐶 ∈ ℝ* ) |
| 27 |
22 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → 𝐵 ∈ ℝ* ) |
| 28 |
26 27
|
xrltnled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
| 29 |
25 28
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → ¬ 𝐵 ≤ 𝐶 ) |
| 30 |
29
|
intnand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝐶 ) ) |
| 31 |
30 12
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → ¬ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) |
| 32 |
23 31
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) → 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ) |
| 33 |
21 32
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) ↔ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) ) |
| 34 |
1 6 7 33
|
eqrd |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶 } ) = { 𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵 } ) |