Metamath Proof Explorer


Theorem issmfgtlem

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all left-open intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (iii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfgtlem.x 𝑥 𝜑
issmfgtlem.a 𝑎 𝜑
issmfgtlem.s ( 𝜑𝑆 ∈ SAlg )
issmfgtlem.d 𝐷 = dom 𝐹
issmfgtlem.i ( 𝜑𝐷 𝑆 )
issmfgtlem.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
issmfgtlem.p ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
Assertion issmfgtlem ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 issmfgtlem.x 𝑥 𝜑
2 issmfgtlem.a 𝑎 𝜑
3 issmfgtlem.s ( 𝜑𝑆 ∈ SAlg )
4 issmfgtlem.d 𝐷 = dom 𝐹
5 issmfgtlem.i ( 𝜑𝐷 𝑆 )
6 issmfgtlem.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
7 issmfgtlem.p ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
8 3 5 restuni4 ( 𝜑 ( 𝑆t 𝐷 ) = 𝐷 )
9 8 eqcomd ( 𝜑𝐷 = ( 𝑆t 𝐷 ) )
10 9 rabeqdv ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } = { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) < 𝑏 } )
11 10 adantr ( ( 𝜑𝑏 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } = { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) < 𝑏 } )
12 nfv 𝑥 𝑏 ∈ ℝ
13 1 12 nfan 𝑥 ( 𝜑𝑏 ∈ ℝ )
14 nfv 𝑎 𝑏 ∈ ℝ
15 2 14 nfan 𝑎 ( 𝜑𝑏 ∈ ℝ )
16 3 uniexd ( 𝜑 𝑆 ∈ V )
17 16 adantr ( ( 𝜑𝐷 𝑆 ) → 𝑆 ∈ V )
18 simpr ( ( 𝜑𝐷 𝑆 ) → 𝐷 𝑆 )
19 17 18 ssexd ( ( 𝜑𝐷 𝑆 ) → 𝐷 ∈ V )
20 5 19 mpdan ( 𝜑𝐷 ∈ V )
21 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
22 3 20 21 subsalsal ( 𝜑 → ( 𝑆t 𝐷 ) ∈ SAlg )
23 22 adantr ( ( 𝜑𝑏 ∈ ℝ ) → ( 𝑆t 𝐷 ) ∈ SAlg )
24 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
25 6 adantr ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → 𝐹 : 𝐷 ⟶ ℝ )
26 simpr ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → 𝑥 ( 𝑆t 𝐷 ) )
27 8 adantr ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → ( 𝑆t 𝐷 ) = 𝐷 )
28 26 27 eleqtrd ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → 𝑥𝐷 )
29 25 28 ffvelrnd ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
30 29 rexrd ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → ( 𝐹𝑥 ) ∈ ℝ* )
31 30 adantlr ( ( ( 𝜑𝑏 ∈ ℝ ) ∧ 𝑥 ( 𝑆t 𝐷 ) ) → ( 𝐹𝑥 ) ∈ ℝ* )
32 8 rabeqdv ( 𝜑 → { 𝑥 ( 𝑆t 𝐷 ) ∣ 𝑎 < ( 𝐹𝑥 ) } = { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } )
33 32 adantr ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ 𝑎 < ( 𝐹𝑥 ) } = { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } )
34 7 r19.21bi ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐷𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
35 33 34 eqeltrd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ 𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
36 35 adantlr ( ( ( 𝜑𝑏 ∈ ℝ ) ∧ 𝑎 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ 𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝑆t 𝐷 ) )
37 simpr ( ( 𝜑𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ )
38 13 15 23 24 31 36 37 salpreimagtlt ( ( 𝜑𝑏 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) )
39 11 38 eqeltrd ( ( 𝜑𝑏 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) )
40 39 ralrimiva ( 𝜑 → ∀ 𝑏 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) )
41 5 6 40 3jca ( 𝜑 → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ) )
42 3 4 issmf ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) )
43 41 42 mpbird ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )