Step |
Hyp |
Ref |
Expression |
1 |
|
issmfgt.s |
|
2 |
|
issmfgt.d |
|
3 |
1
|
adantr |
|
4 |
|
simpr |
|
5 |
3 4 2
|
smfdmss |
|
6 |
3 4 2
|
smff |
|
7 |
|
nfv |
|
8 |
|
nfv |
|
9 |
7 8
|
nfan |
|
10 |
3 5
|
restuni4 |
|
11 |
10
|
eqcomd |
|
12 |
11
|
rabeqdv |
|
13 |
12
|
adantr |
|
14 |
|
nfv |
|
15 |
|
nfv |
|
16 |
14 15
|
nfan |
|
17 |
|
nfv |
|
18 |
16 17
|
nfan |
|
19 |
|
nfv |
|
20 |
1
|
uniexd |
|
21 |
20
|
adantr |
|
22 |
|
simpr |
|
23 |
21 22
|
ssexd |
|
24 |
5 23
|
syldan |
|
25 |
|
eqid |
|
26 |
3 24 25
|
subsalsal |
|
27 |
26
|
adantr |
|
28 |
|
eqid |
|
29 |
6
|
adantr |
|
30 |
|
simpr |
|
31 |
10
|
adantr |
|
32 |
30 31
|
eleqtrd |
|
33 |
29 32
|
ffvelrnd |
|
34 |
33
|
rexrd |
|
35 |
34
|
adantlr |
|
36 |
3 2
|
issmfle |
|
37 |
4 36
|
mpbid |
|
38 |
37
|
simp3d |
|
39 |
10
|
rabeqdv |
|
40 |
39
|
eleq1d |
|
41 |
40
|
ralbidv |
|
42 |
38 41
|
mpbird |
|
43 |
42
|
adantr |
|
44 |
|
simpr |
|
45 |
|
rspa |
|
46 |
43 44 45
|
syl2anc |
|
47 |
46
|
adantlr |
|
48 |
|
simpr |
|
49 |
18 19 27 28 35 47 48
|
salpreimalegt |
|
50 |
13 49
|
eqeltrd |
|
51 |
50
|
ex |
|
52 |
9 51
|
ralrimi |
|
53 |
5 6 52
|
3jca |
|
54 |
53
|
ex |
|
55 |
|
nfv |
|
56 |
|
nfv |
|
57 |
|
nfcv |
|
58 |
|
nfrab1 |
|
59 |
|
nfcv |
|
60 |
58 59
|
nfel |
|
61 |
57 60
|
nfralw |
|
62 |
55 56 61
|
nf3an |
|
63 |
14 62
|
nfan |
|
64 |
|
nfv |
|
65 |
|
nfv |
|
66 |
|
nfra1 |
|
67 |
64 65 66
|
nf3an |
|
68 |
7 67
|
nfan |
|
69 |
1
|
adantr |
|
70 |
|
simpr1 |
|
71 |
|
simpr2 |
|
72 |
|
simpr3 |
|
73 |
63 68 69 2 70 71 72
|
issmfgtlem |
|
74 |
73
|
ex |
|
75 |
54 74
|
impbid |
|
76 |
|
breq1 |
|
77 |
76
|
rabbidv |
|
78 |
|
fveq2 |
|
79 |
78
|
breq2d |
|
80 |
79
|
cbvrabv |
|
81 |
80
|
a1i |
|
82 |
77 81
|
eqtrd |
|
83 |
82
|
eleq1d |
|
84 |
83
|
cbvralvw |
|
85 |
84
|
3anbi3i |
|
86 |
85
|
a1i |
|
87 |
75 86
|
bitrd |
|