| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmfgelem.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | issmfgelem.a | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 3 |  | issmfgelem.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | issmfgelem.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 5 |  | issmfgelem.i | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 6 |  | issmfgelem.f | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 7 |  | issmfgelem.p | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 8 | 3 5 | restuni4 | ⊢ ( 𝜑  →  ∪  ( 𝑆  ↾t  𝐷 )  =  𝐷 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  𝐷  =  ∪  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 10 | 9 | rabeqdv | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 }  =  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 } ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 }  =  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 } ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑥 𝑏  ∈  ℝ | 
						
							| 13 | 1 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑏  ∈  ℝ ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑎 𝑏  ∈  ℝ | 
						
							| 15 | 2 14 | nfan | ⊢ Ⅎ 𝑎 ( 𝜑  ∧  𝑏  ∈  ℝ ) | 
						
							| 16 | 3 | uniexd | ⊢ ( 𝜑  →  ∪  𝑆  ∈  V ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  ∪  𝑆  ∈  V ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 19 | 17 18 | ssexd | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  𝐷  ∈  V ) | 
						
							| 20 | 5 19 | mpdan | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  𝐷 ) | 
						
							| 22 | 3 20 21 | subsalsal | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 24 |  | eqid | ⊢ ∪  ( 𝑆  ↾t  𝐷 )  =  ∪  ( 𝑆  ↾t  𝐷 ) | 
						
							| 25 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 27 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ∪  ( 𝑆  ↾t  𝐷 )  =  𝐷 ) | 
						
							| 28 | 26 27 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 29 | 25 28 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 30 | 29 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ℝ )  ∧  𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 32 | 9 | rabeqdv | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 34 | 2 33 | ralbid | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 35 | 7 34 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 38 |  | rspa | ⊢ ( ( ∀ 𝑎  ∈  ℝ { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 39 | 36 37 38 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 40 | 39 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  ℝ )  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  𝑏  ∈  ℝ ) | 
						
							| 42 | 13 15 23 24 31 40 41 | salpreimagelt | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  { 𝑥  ∈  ∪  ( 𝑆  ↾t  𝐷 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 43 | 11 42 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 45 | 5 6 44 | 3jca | ⊢ ( 𝜑  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 46 | 3 4 | issmf | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑏 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 47 | 45 46 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) |