Step |
Hyp |
Ref |
Expression |
1 |
|
issmfgelem.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
issmfgelem.a |
⊢ Ⅎ 𝑎 𝜑 |
3 |
|
issmfgelem.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
issmfgelem.d |
⊢ 𝐷 = dom 𝐹 |
5 |
|
issmfgelem.i |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
6 |
|
issmfgelem.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
7 |
|
issmfgelem.p |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
8 |
3 5
|
restuni4 |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) = 𝐷 ) |
9 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐷 = ∪ ( 𝑆 ↾t 𝐷 ) ) |
10 |
9
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } = { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } = { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ) |
12 |
|
nfv |
⊢ Ⅎ 𝑥 𝑏 ∈ ℝ |
13 |
1 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑏 ∈ ℝ ) |
14 |
|
nfv |
⊢ Ⅎ 𝑎 𝑏 ∈ ℝ |
15 |
2 14
|
nfan |
⊢ Ⅎ 𝑎 ( 𝜑 ∧ 𝑏 ∈ ℝ ) |
16 |
3
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → ∪ 𝑆 ∈ V ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ⊆ ∪ 𝑆 ) |
19 |
17 18
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ∈ V ) |
20 |
5 19
|
mpdan |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
21 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
22 |
3 20 21
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
24 |
|
eqid |
⊢ ∪ ( 𝑆 ↾t 𝐷 ) = ∪ ( 𝑆 ↾t 𝐷 ) |
25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) |
27 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ∪ ( 𝑆 ↾t 𝐷 ) = 𝐷 ) |
28 |
26 27
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
29 |
25 28
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
30 |
29
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
32 |
9
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ) |
33 |
32
|
eleq1d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
34 |
2 33
|
ralbid |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
35 |
7 34
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∀ 𝑎 ∈ ℝ { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
38 |
|
rspa |
⊢ ( ( ∀ 𝑎 ∈ ℝ { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
39 |
36 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
40 |
39
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
42 |
13 15 23 24 31 40 41
|
salpreimagelt |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
43 |
11 42
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
45 |
5 6 44
|
3jca |
⊢ ( 𝜑 → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
46 |
3 4
|
issmf |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
47 |
45 46
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |