Step |
Hyp |
Ref |
Expression |
1 |
|
issmfge.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
issmfge.d |
⊢ 𝐷 = dom 𝐹 |
3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝑆 ∈ SAlg ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
5 |
3 4 2
|
smfdmss |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
6 |
3 4 2
|
smff |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
7 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
8 |
|
nfv |
⊢ Ⅎ 𝑦 𝐹 ∈ ( SMblFn ‘ 𝑆 ) |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑦 𝑏 ∈ ℝ |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) |
12 |
|
nfv |
⊢ Ⅎ 𝑐 ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) |
13 |
1
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → ∪ 𝑆 ∈ V ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ⊆ ∪ 𝑆 ) |
16 |
14 15
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ∈ V ) |
17 |
5 16
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 ∈ V ) |
18 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
19 |
3 17 18
|
subsalsal |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
21 |
6
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
22 |
21
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
23 |
22
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
24 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
25 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℝ ) |
27 |
24 25 2 26
|
smfpreimagt |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ 𝑐 < ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
28 |
27
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑐 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ 𝑐 < ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
30 |
11 12 20 23 28 29
|
salpreimagtge |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
31 |
30
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
32 |
5 6 31
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
34 |
|
nfv |
⊢ Ⅎ 𝑦 𝐷 ⊆ ∪ 𝑆 |
35 |
|
nfv |
⊢ Ⅎ 𝑦 𝐹 : 𝐷 ⟶ ℝ |
36 |
|
nfcv |
⊢ Ⅎ 𝑦 ℝ |
37 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } |
38 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑆 ↾t 𝐷 ) |
39 |
37 38
|
nfel |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) |
40 |
36 39
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) |
41 |
34 35 40
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
42 |
7 41
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
43 |
|
nfv |
⊢ Ⅎ 𝑏 𝜑 |
44 |
|
nfv |
⊢ Ⅎ 𝑏 𝐷 ⊆ ∪ 𝑆 |
45 |
|
nfv |
⊢ Ⅎ 𝑏 𝐹 : 𝐷 ⟶ ℝ |
46 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) |
47 |
44 45 46
|
nf3an |
⊢ Ⅎ 𝑏 ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
48 |
43 47
|
nfan |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
49 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝑆 ∈ SAlg ) |
50 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
51 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
52 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
53 |
42 48 49 2 50 51 52
|
issmfgelem |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
54 |
53
|
ex |
⊢ ( 𝜑 → ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ) |
55 |
33 54
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
56 |
|
breq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) ↔ 𝑎 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
57 |
56
|
rabbidv |
⊢ ( 𝑏 = 𝑎 → { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } = { 𝑦 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑦 ) } ) |
58 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
59 |
58
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑎 ≤ ( 𝐹 ‘ 𝑦 ) ↔ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
60 |
59
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑦 ) } = { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } |
61 |
60
|
a1i |
⊢ ( 𝑏 = 𝑎 → { 𝑦 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑦 ) } = { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ) |
62 |
57 61
|
eqtrd |
⊢ ( 𝑏 = 𝑎 → { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } = { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ) |
63 |
62
|
eleq1d |
⊢ ( 𝑏 = 𝑎 → ( { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
64 |
63
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
65 |
64
|
3anbi3i |
⊢ ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
66 |
65
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ 𝑏 ≤ ( 𝐹 ‘ 𝑦 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
67 |
55 66
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ 𝑎 ≤ ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |