| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmfge.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | issmfge.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 3 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 | 3 4 2 | smfdmss | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 6 | 3 4 2 | smff | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑦 𝐹  ∈  ( SMblFn ‘ 𝑆 ) | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑦 𝑏  ∈  ℝ | 
						
							| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑐 ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ ) | 
						
							| 13 | 1 | uniexd | ⊢ ( 𝜑  →  ∪  𝑆  ∈  V ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  ∪  𝑆  ∈  V ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 16 | 14 15 | ssexd | ⊢ ( ( 𝜑  ∧  𝐷  ⊆  ∪  𝑆 )  →  𝐷  ∈  V ) | 
						
							| 17 | 5 16 | syldan | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  𝐷  ∈  V ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  𝐷 ) | 
						
							| 19 | 3 17 18 | subsalsal | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 21 | 6 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 22 | 21 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑦  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 23 | 22 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  ∧  𝑦  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 24 | 3 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑐  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 25 | 4 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑐  ∈  ℝ )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑐  ∈  ℝ )  →  𝑐  ∈  ℝ ) | 
						
							| 27 | 24 25 2 26 | smfpreimagt | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑐  ∈  ℝ )  →  { 𝑦  ∈  𝐷  ∣  𝑐  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  ∧  𝑐  ∈  ℝ )  →  { 𝑦  ∈  𝐷  ∣  𝑐  <  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  𝑏  ∈  ℝ ) | 
						
							| 30 | 11 12 20 23 28 29 | salpreimagtge | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  ∧  𝑏  ∈  ℝ )  →  { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 31 | 30 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 32 | 5 6 31 | 3jca | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( SMblFn ‘ 𝑆 ) )  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  →  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑦 𝐷  ⊆  ∪  𝑆 | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑦 𝐹 : 𝐷 ⟶ ℝ | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑦 ℝ | 
						
							| 37 |  | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) } | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝑆  ↾t  𝐷 ) | 
						
							| 39 | 37 38 | nfel | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) | 
						
							| 40 | 36 39 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) | 
						
							| 41 | 34 35 40 | nf3an | ⊢ Ⅎ 𝑦 ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 42 | 7 41 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 43 |  | nfv | ⊢ Ⅎ 𝑏 𝜑 | 
						
							| 44 |  | nfv | ⊢ Ⅎ 𝑏 𝐷  ⊆  ∪  𝑆 | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑏 𝐹 : 𝐷 ⟶ ℝ | 
						
							| 46 |  | nfra1 | ⊢ Ⅎ 𝑏 ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) | 
						
							| 47 | 44 45 46 | nf3an | ⊢ Ⅎ 𝑏 ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 48 | 43 47 | nfan | ⊢ Ⅎ 𝑏 ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 49 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝑆  ∈  SAlg ) | 
						
							| 50 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 51 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 52 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 53 | 42 48 49 2 50 51 52 | issmfgelem | ⊢ ( ( 𝜑  ∧  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝜑  →  ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) ) | 
						
							| 55 | 33 54 | impbid | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 56 |  | breq1 | ⊢ ( 𝑏  =  𝑎  →  ( 𝑏  ≤  ( 𝐹 ‘ 𝑦 )  ↔  𝑎  ≤  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 57 | 56 | rabbidv | ⊢ ( 𝑏  =  𝑎  →  { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑦  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑦 ) } ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 59 | 58 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑎  ≤  ( 𝐹 ‘ 𝑦 )  ↔  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 60 | 59 | cbvrabv | ⊢ { 𝑦  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 61 | 60 | a1i | ⊢ ( 𝑏  =  𝑎  →  { 𝑦  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 62 | 57 61 | eqtrd | ⊢ ( 𝑏  =  𝑎  →  { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 63 | 62 | eleq1d | ⊢ ( 𝑏  =  𝑎  →  ( { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 64 | 63 | cbvralvw | ⊢ ( ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 65 | 64 | 3anbi3i | ⊢ ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 66 | 65 | a1i | ⊢ ( 𝜑  →  ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑏  ∈  ℝ { 𝑦  ∈  𝐷  ∣  𝑏  ≤  ( 𝐹 ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  𝐷 ) )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 67 | 55 66 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  𝑎  ≤  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) |