Metamath Proof Explorer


Theorem issmfge

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of F is required to be b subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (iv) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfge.s φSSAlg
issmfge.d D=domF
Assertion issmfge φFSMblFnSDSF:DaxD|aFxS𝑡D

Proof

Step Hyp Ref Expression
1 issmfge.s φSSAlg
2 issmfge.d D=domF
3 1 adantr φFSMblFnSSSAlg
4 simpr φFSMblFnSFSMblFnS
5 3 4 2 smfdmss φFSMblFnSDS
6 3 4 2 smff φFSMblFnSF:D
7 nfv yφ
8 nfv yFSMblFnS
9 7 8 nfan yφFSMblFnS
10 nfv yb
11 9 10 nfan yφFSMblFnSb
12 nfv cφFSMblFnSb
13 1 uniexd φSV
14 13 adantr φDSSV
15 simpr φDSDS
16 14 15 ssexd φDSDV
17 5 16 syldan φFSMblFnSDV
18 eqid S𝑡D=S𝑡D
19 3 17 18 subsalsal φFSMblFnSS𝑡DSAlg
20 19 adantr φFSMblFnSbS𝑡DSAlg
21 6 ffvelcdmda φFSMblFnSyDFy
22 21 rexrd φFSMblFnSyDFy*
23 22 adantlr φFSMblFnSbyDFy*
24 3 adantr φFSMblFnScSSAlg
25 4 adantr φFSMblFnScFSMblFnS
26 simpr φFSMblFnScc
27 24 25 2 26 smfpreimagt φFSMblFnScyD|c<FyS𝑡D
28 27 adantlr φFSMblFnSbcyD|c<FyS𝑡D
29 simpr φFSMblFnSbb
30 11 12 20 23 28 29 salpreimagtge φFSMblFnSbyD|bFyS𝑡D
31 30 ralrimiva φFSMblFnSbyD|bFyS𝑡D
32 5 6 31 3jca φFSMblFnSDSF:DbyD|bFyS𝑡D
33 32 ex φFSMblFnSDSF:DbyD|bFyS𝑡D
34 nfv yDS
35 nfv yF:D
36 nfcv _y
37 nfrab1 _yyD|bFy
38 nfcv _yS𝑡D
39 37 38 nfel yyD|bFyS𝑡D
40 36 39 nfralw ybyD|bFyS𝑡D
41 34 35 40 nf3an yDSF:DbyD|bFyS𝑡D
42 7 41 nfan yφDSF:DbyD|bFyS𝑡D
43 nfv bφ
44 nfv bDS
45 nfv bF:D
46 nfra1 bbyD|bFyS𝑡D
47 44 45 46 nf3an bDSF:DbyD|bFyS𝑡D
48 43 47 nfan bφDSF:DbyD|bFyS𝑡D
49 1 adantr φDSF:DbyD|bFyS𝑡DSSAlg
50 simpr1 φDSF:DbyD|bFyS𝑡DDS
51 simpr2 φDSF:DbyD|bFyS𝑡DF:D
52 simpr3 φDSF:DbyD|bFyS𝑡DbyD|bFyS𝑡D
53 42 48 49 2 50 51 52 issmfgelem φDSF:DbyD|bFyS𝑡DFSMblFnS
54 53 ex φDSF:DbyD|bFyS𝑡DFSMblFnS
55 33 54 impbid φFSMblFnSDSF:DbyD|bFyS𝑡D
56 breq1 b=abFyaFy
57 56 rabbidv b=ayD|bFy=yD|aFy
58 fveq2 y=xFy=Fx
59 58 breq2d y=xaFyaFx
60 59 cbvrabv yD|aFy=xD|aFx
61 60 a1i b=ayD|aFy=xD|aFx
62 57 61 eqtrd b=ayD|bFy=xD|aFx
63 62 eleq1d b=ayD|bFyS𝑡DxD|aFxS𝑡D
64 63 cbvralvw byD|bFyS𝑡DaxD|aFxS𝑡D
65 64 3anbi3i DSF:DbyD|bFyS𝑡DDSF:DaxD|aFxS𝑡D
66 65 a1i φDSF:DbyD|bFyS𝑡DDSF:DaxD|aFxS𝑡D
67 55 66 bitrd φFSMblFnSDSF:DaxD|aFxS𝑡D