Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all left-closed intervals unbounded above are in the subspace sigma-algebra induced by its domain. The domain of F is required to be b subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (iv) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issmfge.s | |
|
issmfge.d | |
||
Assertion | issmfge | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfge.s | |
|
2 | issmfge.d | |
|
3 | 1 | adantr | |
4 | simpr | |
|
5 | 3 4 2 | smfdmss | |
6 | 3 4 2 | smff | |
7 | nfv | |
|
8 | nfv | |
|
9 | 7 8 | nfan | |
10 | nfv | |
|
11 | 9 10 | nfan | |
12 | nfv | |
|
13 | 1 | uniexd | |
14 | 13 | adantr | |
15 | simpr | |
|
16 | 14 15 | ssexd | |
17 | 5 16 | syldan | |
18 | eqid | |
|
19 | 3 17 18 | subsalsal | |
20 | 19 | adantr | |
21 | 6 | ffvelcdmda | |
22 | 21 | rexrd | |
23 | 22 | adantlr | |
24 | 3 | adantr | |
25 | 4 | adantr | |
26 | simpr | |
|
27 | 24 25 2 26 | smfpreimagt | |
28 | 27 | adantlr | |
29 | simpr | |
|
30 | 11 12 20 23 28 29 | salpreimagtge | |
31 | 30 | ralrimiva | |
32 | 5 6 31 | 3jca | |
33 | 32 | ex | |
34 | nfv | |
|
35 | nfv | |
|
36 | nfcv | |
|
37 | nfrab1 | |
|
38 | nfcv | |
|
39 | 37 38 | nfel | |
40 | 36 39 | nfralw | |
41 | 34 35 40 | nf3an | |
42 | 7 41 | nfan | |
43 | nfv | |
|
44 | nfv | |
|
45 | nfv | |
|
46 | nfra1 | |
|
47 | 44 45 46 | nf3an | |
48 | 43 47 | nfan | |
49 | 1 | adantr | |
50 | simpr1 | |
|
51 | simpr2 | |
|
52 | simpr3 | |
|
53 | 42 48 49 2 50 51 52 | issmfgelem | |
54 | 53 | ex | |
55 | 33 54 | impbid | |
56 | breq1 | |
|
57 | 56 | rabbidv | |
58 | fveq2 | |
|
59 | 58 | breq2d | |
60 | 59 | cbvrabv | |
61 | 60 | a1i | |
62 | 57 61 | eqtrd | |
63 | 62 | eleq1d | |
64 | 63 | cbvralvw | |
65 | 64 | 3anbi3i | |
66 | 65 | a1i | |
67 | 55 66 | bitrd | |