| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimgtmpt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfpimgtmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfpimgtmpt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | smfpimgtmpt.f | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfpimgtmpt.l | ⊢ ( 𝜑  →  𝐿  ∈  ℝ ) | 
						
							| 6 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 8 | 6 2 4 7 5 | smfpreimagtf | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 10 | 1 9 3 | dmmptdf | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 11 | 6 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 13 | 11 12 | rabeqf | ⊢ ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴  →  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) } ) | 
						
							| 14 | 10 13 | syl | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) } ) | 
						
							| 15 | 9 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 16 | 15 3 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 17 | 16 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  𝐿  <  𝐵 ) ) | 
						
							| 18 | 1 17 | rabbida | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 } ) | 
						
							| 19 |  | eqidd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 } ) | 
						
							| 20 | 14 18 19 | 3eqtrrd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  =  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) } ) | 
						
							| 21 | 10 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐴 )  =  ( 𝑆  ↾t  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 23 | 20 22 | eleq12d | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  ∈  ( 𝑆  ↾t  𝐴 )  ↔  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) ) | 
						
							| 24 | 8 23 | mpbird | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  ∈  ( 𝑆  ↾t  𝐴 ) ) |