| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimgtmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smfpimgtmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smfpimgtmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
smfpimgtmpt.f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smfpimgtmpt.l |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 6 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 7 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 8 |
6 2 4 7 5
|
smfpreimagtf |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 10 |
1 9 3
|
dmmptdf |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 11 |
6
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 13 |
11 12
|
rabeqf |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ) |
| 14 |
10 13
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ) |
| 15 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 16 |
15 3
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 17 |
16
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 𝐿 < 𝐵 ) ) |
| 18 |
1 17
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ) |
| 19 |
|
eqidd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ) |
| 20 |
14 18 19
|
3eqtrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } = { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ) |
| 21 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 23 |
20 22
|
eleq12d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ∈ ( 𝑆 ↾t 𝐴 ) ↔ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
| 24 |
8 23
|
mpbird |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ∈ ( 𝑆 ↾t 𝐴 ) ) |