Metamath Proof Explorer


Theorem smfpimgtmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimgtmpt.x x φ
smfpimgtmpt.s φ S SAlg
smfpimgtmpt.b φ x A B V
smfpimgtmpt.f φ x A B SMblFn S
smfpimgtmpt.l φ L
Assertion smfpimgtmpt φ x A | L < B S 𝑡 A

Proof

Step Hyp Ref Expression
1 smfpimgtmpt.x x φ
2 smfpimgtmpt.s φ S SAlg
3 smfpimgtmpt.b φ x A B V
4 smfpimgtmpt.f φ x A B SMblFn S
5 smfpimgtmpt.l φ L
6 nfmpt1 _ x x A B
7 eqid dom x A B = dom x A B
8 6 2 4 7 5 smfpreimagtf φ x dom x A B | L < x A B x S 𝑡 dom x A B
9 eqid x A B = x A B
10 1 9 3 dmmptdf φ dom x A B = A
11 6 nfdm _ x dom x A B
12 nfcv _ x A
13 11 12 rabeqf dom x A B = A x dom x A B | L < x A B x = x A | L < x A B x
14 10 13 syl φ x dom x A B | L < x A B x = x A | L < x A B x
15 9 a1i φ x A B = x A B
16 15 3 fvmpt2d φ x A x A B x = B
17 16 breq2d φ x A L < x A B x L < B
18 1 17 rabbida φ x A | L < x A B x = x A | L < B
19 eqidd φ x A | L < B = x A | L < B
20 14 18 19 3eqtrrd φ x A | L < B = x dom x A B | L < x A B x
21 10 eqcomd φ A = dom x A B
22 21 oveq2d φ S 𝑡 A = S 𝑡 dom x A B
23 20 22 eleq12d φ x A | L < B S 𝑡 A x dom x A B | L < x A B x S 𝑡 dom x A B
24 8 23 mpbird φ x A | L < B S 𝑡 A