Metamath Proof Explorer


Theorem smfpreimage

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of a closed interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimage.s φSSAlg
smfpreimage.f φFSMblFnS
smfpreimage.d D=domF
smfpreimage.a φA
Assertion smfpreimage φxD|AFxS𝑡D

Proof

Step Hyp Ref Expression
1 smfpreimage.s φSSAlg
2 smfpreimage.f φFSMblFnS
3 smfpreimage.d D=domF
4 smfpreimage.a φA
5 1 3 issmfge φFSMblFnSDSF:DaxD|aFxS𝑡D
6 2 5 mpbid φDSF:DaxD|aFxS𝑡D
7 6 simp3d φaxD|aFxS𝑡D
8 breq1 a=AaFxAFx
9 8 rabbidv a=AxD|aFx=xD|AFx
10 9 eleq1d a=AxD|aFxS𝑡DxD|AFxS𝑡D
11 10 rspcva AaxD|aFxS𝑡DxD|AFxS𝑡D
12 4 7 11 syl2anc φxD|AFxS𝑡D