Metamath Proof Explorer


Theorem mbfpsssmf

Description: Real-valued measurable functions are a proper subset of sigma-measurable functions (w.r.t. the Lebesgue measure on the reals). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis mbfpsssmf.1 S = dom vol
Assertion mbfpsssmf MblFn 𝑝𝑚 SMblFn S

Proof

Step Hyp Ref Expression
1 mbfpsssmf.1 S = dom vol
2 elinel1 f MblFn 𝑝𝑚 f MblFn
3 elinel2 f MblFn 𝑝𝑚 f 𝑝𝑚
4 elpmrn f 𝑝𝑚 ran f
5 3 4 syl f MblFn 𝑝𝑚 ran f
6 2 5 1 mbfresmf f MblFn 𝑝𝑚 f SMblFn S
7 6 ssriv MblFn 𝑝𝑚 SMblFn S
8 1 nsssmfmbf ¬ SMblFn S MblFn
9 2 ssriv MblFn 𝑝𝑚 MblFn
10 nsstr ¬ SMblFn S MblFn MblFn 𝑝𝑚 MblFn ¬ SMblFn S MblFn 𝑝𝑚
11 8 9 10 mp2an ¬ SMblFn S MblFn 𝑝𝑚
12 7 11 pm3.2i MblFn 𝑝𝑚 SMblFn S ¬ SMblFn S MblFn 𝑝𝑚
13 dfpss3 MblFn 𝑝𝑚 SMblFn S MblFn 𝑝𝑚 SMblFn S ¬ SMblFn S MblFn 𝑝𝑚
14 12 13 mpbir MblFn 𝑝𝑚 SMblFn S